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FROM THE AUTHOR'S PREFACE TO
THE FIRST GERMAN EDITION

THE
importance of the standpoint afforded by the theory

of groups for the discovery of the general laws of

quantum theory has of late become more and more

apparent. Since I have for some years been deeply concerned

with the theory of the representation of continuous groups, it

has seemed to me appropriate and important to give an account

of the knowledge won by mathematicians working in this field

in a form suitable to the requirements of quantum physics. An
additional impetus is to be found in the fact that, from the

purely mathematical standpoint, it is no longer justifiable to

draw such sharp distinctions between finite and continuous

groups in discussing the theory of their representations as has

been done in the existing texts on the subject. My desire to

show how the concepts arising in the theory of groups find their

application in physics by discussing certain of the more important

examples has necessitated the inclusion of a short account of the

foundations of quantum physics, for at the time the manuscript
was written there existed no treatment of the subject to which

I could refer the reader. In brief this book, if it fulfills its

purpose, should enable the reader to learn the essentials of the

theory of groups and of quantum mechanics as well as the rela-

tionships existing between these two subjects ;
the mathematical

portions have been written with the physicist in mind, and vice

versa. I have particularly emphasized the
"
reciprocity

M
be-

tween the representations of the symmetric permutation group
and those of the complete linear group ;

this reciprocity has as

yet been unduly neglected in the physical literature, in spite of

the fact that it follows most naturally from the conceptual

structure of quantum mechanics.

vii
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viii THE THEORY OF GROUPS

There exists, in my opinion, a plainly discernible parallelism

between the more recent developments of mathematics and

physics. Occidental mathematics has in past centuries broken

away from the Greek view and followed a course which seems

to have originated in India and which has been transmitted,

with additions, to us by the Arabs
;

in it the concept of number

appears as logically prior to the concepts of geometry. The

result of this has been that we have applied this systematically

developed number concept to all branches, irrespective of whether

it is most appropriate for these particular applications. But

the present trend in mathematics is clearly in the direction of a

return to the Greek standpoint ;
we now look upon each branch

of mathematics as determining its own characteristic domain

of quantities. The algebraist of the present day considers the

continuum of real or complex numbers as merely one
"

field
"

among many ;
the recent axiomatic foundation of projective

geometry may be considered as the geometric counterpart of

this view. This newer mathematics, including the modern

theory of groups and "
abstract algebra," is clearly motivated

by a spirit different from that of
"

classical mathematics," which

found its highest expression in the theory of functions of a

complex variable. The continuum of real numbers has retained

its ancient prerogative in physics for the expression of physical

measurements, but it can justly be maintained that the essence

of the new Heisenberg-Schrodinger-Dirac quantum mechanics is

to be found in the fact that there is associated with each physical

system a set of quantities, constituting a non-commutative

algebra in the technical mathematical sense, the elements of

which are the physical quantities themselves.

ZURICH, August, 1928
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THIS
translation was first planned, and in part completed,

during the academic year 1928-29, when the translator

was acting as assistant to Professor Weyl in Princeton.

Unforeseen delays prevented the completion of the manuscript

at that time, and as Professor Weyl decided shortly afterward

to undertake the revision outlined in the preface above it seemed

desirable to follow the revised edition. In the preparation of

this manuscript the German has been followed as closely as

possible, in the conviction that any alterations would but de-

tract from the elegant and logical treatment which characterizes

Professor Weyl's works. While an attempt has been made

to follow the more usual English terminology in general, this

programme is limited by the fact that the fusion of branches of

knowledge which have in the past been so widely separated as

the theory of groups and quantum theory can be accomplished

only by adapting the existing terminology of each to that of

the other
;

a minor difficulty of a similar nature is to be found

in the fact that the development of
"

fields
"
and

"
algebras

"

in Chapter V is accomplished in a manner which makes it appear
desirable to deviate from the accepted English terminology.

It is a pleasure to express my indebtedness to Professor Weyl
for general encouragement and assistance, to Professor R. E.

Winger of Union College for the assistance he has rendered in

correcting proof and in preparing the index, and to the publishers

for their cooperation in adhering as closely as possible to the

original typography.
H. P. ROBERTSON

PRINCETON, September, 1931
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AUTHOR'S PREFACE TO
THE SECOND GERMAN EDITION

DURING

the academic year 1928-29 I held a professorship

in mathematical physics in Princeton University. The

lectures which I gave there and in other American insti-

tutions afforded me a much desired opportunity to present anew,

and from an improved pedagogical standpoint, the connection

between groups and quanta. The experience thus obtained has

found its expression in this new edition, in which the subject

has been treated from a more thoroughly elementary standpoint.

Transcendental methods, which are in group theory based on

the calculus of group characteristics, have the advantage of

offering a rapid view of the subject as a whole, but true under-

standing of the relationships is to be obtained only by following

an explicit elementary development. I may mention in this

connection the derivation of the Clebsch-Gordan series, which is

of fundamental importance for the whole of spectroscopy and

for the applications of quantum theory to chemistry, the section

on the Jordan-Holder theorem and its analogues, and above all

the careful investigation of the connection between the algebra
of symmetric transformations and the symmetric permutation

group. The reciprocity laws expressing this connection, which

were proved by transcendental methods in the first edition, as well

as the group-theoretic problem arising from the existence of spin
have also been treated from the elementary standpoint. Indeed,
the whole of Chapter V which was, in the opinion of many
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x THE THEORY OF GROUPS

impossible to avoid presenting the principal part of the theory
of representations twice

;
first in Chapter III, where the repre-

sentations are taken as given and their properties examined,
and again in Chapter V, where the method of constructing the

representations of a given group and of deducing their properties

is developed. But I believe the reader will find this two-fold

treatment an advantage rather than a hindrance.

To come to the changes in the more physical portions, in

Chapter IV the role of the group of virtual rotations of space
is more clearly presented. But above all several sections have

been added which deal with the energy-momentum theorem of

quantum physics and with the quantization of the wave equation
in accordance with the recent work of Heisenberg and Pauli.

This extension already leads so far away from the fundamental

purpose of the book that I felt forced to omit the formulation

of the quantum laws in accordance with the general theory of

relativity, as developed by V. Fock and myself, in spite of its

desirability for the deduction of the energy-momentum tensor.

The fundamental problem of the proton and the electron has

been discussed in its relation to the symmetry properties of the

quantum laws with respect to the interchange of right and left,

past and future, and positive and negative electricity. At

present no solution of the problem seems in sight ;
I fear that

the clouds hanging over this part of the subject will roll together

to form a new crisis in quantum physics. I have intentionally

presented the more difficult portions of these problems of spin

and second quantization in considerable detail, as they have

been for the most part either entirely ignored or but hastily

indicated in the large number of texts which have now appeared
on quantum mechanics.

It has been rumoured that the
"
grcTup pest

"
is gradually

being cut out of quantum physics. This is certainly not true

in so far as the rotation and Lorentz groups are concerned
;

as for the permutation group, it does indeed seem possible to

avoid it with the aid of the Pauli exclusion principle. Never-

theless the theory must retain the representations of the per-

mutation group as a natural tool in obtaining an understanding
of the relationships due to the introduction of spin, so long as

its specific dynamic effect is-neglected. I have here followed the

Pure Mathematical Physics



PREFACE TO SECOND GERMAN EDITION xi

trend of the times, as far as justifiable, in presenting the group-

theoretic portions in as elementary a form as possible. The

calculations of perturbation theory are widely separated from

these general considerations
;

I have therefore restricted myself

to indicating the method of attack without either going into

details or mentioning the many applications which have been

based on the ingenious papers of Hartree, Slater, Dirac and

others.

The constants c and A, the velocity of light and the quantum
of action, have caused some trouble. The insight into the

significance of these constants, obtained by the theory of rela-

tivity on the one hand and quantum theory on the other, is

most forcibly expressed by the fact that they do not occur in

the laws of Nature in a thoroughly systematic development of

these theories. But physicists prefer to retain the usual c.g.s.

units principally because they are of the order of magnitude of

the physical quantities with which we deal in everyday life.

Only a wavering compromise is possible between these practical

considerations and the ideal of the systematic theorist
;

I

initially adopt, with some regret, the current physical usage,

but in the course of Chapter IV the theorist gains the upper
hand.

An attempt has been made to increase the clarity of the

exposition by numbering the formulae in accordance with the

sections to which they belong, by emphasizing the more im-

portant concepts by the use of boldface type on introducing

them, and by lists of operational symbols and of letters having
a fixed significance.

H. WEYL.

GOTTINGEN, November, 1930

Pure Mathematical Physics



Pure Mathematical Physics



Pure Mathematical Physics



CONTENTS

PAGE

AUTHOR'S PREFACES .......... vii

TRANSLATOR'S PREFACE xiii

INTRODUCTION ........... xix

CHAPTER
I. UNITARY GEOMETRY ......... i

1 . The n-dimensional Vector Space...... i

2. Linear Correspondences. Matrix Calculus.... 5

3. The Dual Vector Space . . . . . . .12
4. Unitary Geometry and Hermitian Forms . . . .15
5. Transformation to Principal Axes . . . . .21
6. Infinitesimal Unitary Transformations . . . 27
7. Remarks on oo-dimensional Space . . . . .31

H. QUANTUM THEORY 41

1. Physical Foundations . . . . . . . 41
2. The de Broglie Waves of a Particle ..... 48
3. Schrodinger's Wave Equation. The Harmonic Oscillator . 54
4. Spherical Harmonics ........ 60

5. Electron in Spherically Symmetric Field. Directional Quan-
tization . . . . . . . . 63

6. Collision Phenomena ........ 70
7. The Conceptual Structure of Quantum Mechanics . . 74
8. The Dynamical Law. Transition Probabilities ... 80

9. Perturbation Theory ........ 86
10. The Problem of Several Bodies. Product Space . . 89
11. Commutation Rules. Canonical Transformations . . 93
12. Motion of a Particle in an Electro-magnetic Field. Zeeman

Effect and Stark Effect 98
13. Atom in Interaction with Radiation ..... 102

III. GROUPS AND THEIR REPRESENTATIONS , . . . . . I TO

1. Transformation Groups . . . . . . .no
2. Abstract Groups and their Realization . . . . 113
3. Sub-groups and Conjugate Classes . . . . .116
4. Representation of Groups by Linear Transformations . 120

5. Formal Processes. Clebsch-Gordan Series . . . .123
6. The Jordan-Holder Theorem and its Analogues . . . 131
7. Unitary Representations . . . . . . .136
8. Rotation and Lorentz Groups . . . . . .140
9. Character of a Representation . . . . . .150
10. Schur's Lemma and Burnside's Theorem . . . . 152
11. Orthogonality Properties of Group Characters . . . 157

xv

Pure Mathematical Physics



xvi THE THEORY OF GROUPS
PAGE

12. Extension to Closed Continuous Groups . . . .160
13. The Algebra of a Group 165
14. Invariants and Covariants . . . . , . .170
15. Remarks on Lie's Theory of Continuous Groups of Trans-

formations ......... 175
1 6. Representation by Rotations of Ray Space . . .180

IV. APPLICATION OF THE THEORY OF GROUPS TO QUANTUM MECHANICS 185

A. The Rotation Group

1. The Representation Induced in System Space by the Rota-
tion Group ......... 185

2. Simple States and Term Analysis. Examples . . .191
3. Selection and Intensity Rules . . . . . .197
4. The Spinning Electron, Multiplet Structure and Anomalous

Zeeman Effect 202

B. The Lorentz Group

5. Relativistically Invariant Equations of Motion of an Electron 210

6.. Energy and Momentum. Remarks on the Interchange of Past
and Future . . . . . . . . .218

7. Electron in Spherically Symmetric Field . . . .227
8. Selection Rules. Fine Structure . . . . .232

C. The Permutation Group

9. Resonance between Equivalent Individuals . . . 238
10. The Pauli Exclusion Principle and the Structure of the

Periodic Table ........ 242
11. The Problem of Several Bodies and the Quantization of

the Wave Equation ....... 246
12. Quantization of the Maxwell-Dirac Field Equations . . 253
13. The Energy and Momentum Laws of Quantum Physics.

Relativistic Invariance....... 264

D. Quantum Kinematics

14. Quantum Kinematics as an Abelian Group of Rotations . 272
15. Derivation of the Wave Equation from the Commutation

Rules .......... 277

V. THE SYMMETRIC PERMUTATION GROUP AND THE ALGEBRA OF SYM-
METRIC TRANSFORMATIONS . . . . . .281

A . General Theory

1. The Group induced in Tensor Space and the Algebra of

Symmetric Transformations . . . . . .281
2. Symmetry Classes of Tensors ...... 286

3. Invariant Sub-spaces in Group Space . . .291
4. Invariant Sub-spaces in Tensor Space .... 296
5. Fields and Algebras . . . . . . . .302
6. Representations of Algebras ...... 304
7. Constructive Reduction of an Algebra into Simple Matric

Algebras 309

B. Extension of the Theory and Physical Applications

8. The Characters of the Symmetric Group and Equivalence
Degeneracy in Quantum Mechanics . . . 319

9. Relation between the Characters of the Symmetric Per
mutation and Amne Groups

10. Direct Product. Sub-groups .....
11. Perturbation Theory for the Construction of Molecules
12. The Symmetry Problem of Quantum Theory

326
332
339
347

Pure Mathematical Physics



CONTENTS xvii

C. Explicit Algebraic Construction

PAGE

13. Young's Symmetry Operators ...... 358
14. Irreducibility, Linear Independence, Inequivalence and

Completeness......... 362
15. Spin and Valence. Group-theoretic Classification of Atomic

Spectra .......... 369
16. Determination of the Primitive Characters of u and IT . 377
17. Calculation of Volume on u . . . . . 386
18. Branching Laws......... 390

APPENDIX
1. PROOF OF AN INEQUALITY ........ 393

2. A COMPOSITION PROPERTY OF GROUP CHARACTERS .... 395

3. A THEOREM CONCERNING NON-DEGENERATE ANTI-SYMMETRIC BI-
LINEAR FORMS ......... 397

BIBLIOGRAPHY ........... 399

LIST OF OPERATIONAL SYMBOLS 409

LIST OF LETTERS HAVING A FIXED SIGNIFICANCE .... 410

INDEX............. 413

Pure Mathematical Physics



Pure Mathematical Physics



INTRODUCTION

p" "^IIE quantum theory of atomic processes was proposed by
I NIELS BOHR in the year 1913, and was based on the

JL atomic model proposed earlier by RUTHERFORD. The

deduction of the Balmer series for the line spectrum of hydrogen
and of the Rydberg numbe~ from universal atomic constants

constituted its first convincing confirmation. This theory gave
us the key to the understanding of the regularities observed in

optical and X-ray spectra, and led to a deeper insight into the

structure of the periodic system of chemical elements. The issue

of Naturwissenschaften, dedicated to BOHR and entitled
"
Die

ersten zehn Jahre der Theorie von NIELS Bohr iiber den Bau

der Atome "
(Vol. 11, p. 535 (1923)), gives a short account of the

successes of the theory at its peak. But about this time it began
to become more and more apparent that the BOHR theory was

a compromise between the old "classical" physics and a new

quantum physics which has been in the process of development
since Planck's introduction of energy quanta in 1900. BOHR

described the situation in an address on " Atomic Theory and

Mechanics" (appearing in Nature, 116, p. 845 (1925)) in the

words: "From these results it seems to follow that, in the

general problem of the quantum theory, one is faced not with

a modification of the mechanical and electrodynamical theories

describable in terms of the usual physical concepts, but with

an essential failure of the pictures in space and time on which

the description of natural phenomena has hitherto been based."

The rupture which led to a new stage of the theory was made

by HEISENBERG, who replaced Bohr's negative prophecy by a

positive guiding principle.

The foundations of the new quantum physics, or at least

its more important theoretical aspects, are to be treated in this

xix
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xx THE THEORY OF GROUPS

book. For supplementary references on the physical side,

which are urgently required, I name above all the fourth edition

of SOMMERFELD'S well-known "Atombau und Spektrallinien
"

(Braunschweig, 1924), or the English translation
" Atomic

Structure and Spectral Lines
"

(London, 1923) of the third

edition, together with the recent (1929)
" Wellenmechanischer

Erganzungsband
"
or its English translation

" Wave Mechanics
"

(1930). An equivalent original English book is that of RUARK
AND UREY,

"
Atoms, Molecules and Quanta

"
(New York, 1930),

which appears in the
"
International Series in Physics," edited

by RICHTMEYER. I should also recommend GERLACH'S short

but valuable survey
"
Experimented Grundlagen der Quanten-

theorie
n

(Braunschweig, 1921). The spectroscopic data, pre-

sented in accordance with the new quantum theory, together

with complete references to the literature, are given in the

following three volumes of the series
" Struktur der Materie,"

edited by BORN AND FRANCK :

F. HUND,
"
Linienspektren und periodisches System der

Elemente" (1927);

E. BACK AND A. LANDE,
" Zeemaneffekt und Multiplett-

struktur der Spektrallinien" (1925);

W. GROTRIAN,
"
Graphische Darstellung der Spektren von

Atomen und lonen mit ein, zwei und drei Valenzelektronen
"

(1928).

The spectroscopic aspects of the subject are also discussed

in PAULING AND GOUDSMIT'S recent "The Structure of Line

Spectra" (1930), which also appears in the "International

Series in Physics."

The development of quantum theory has only been made

possible by the enormous refinement of experimental technique,

which has given us an almost direct insight into atomic

processes. If in the following little is said concerning the

experimental facts, it should not be attributed to the mathe-

matical haughtiness of the author; to report on these things

lies outside his field. Allow me to express now, once and for

all, my deep respect for the work of the experimenter and for

his fight to wring significant facts from an inflexible Nature,

who says so distinctly "No" and so indistinctly "Yes" to

our theories.
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Our generation is witness to a development of physical

knowledge such as has not been seen since the days of KEPLER,
GALILEO AND NEWTON, and mathematics has scarcely ever

experienced such a stormy epoch. Mathematical thought
removes the spirit from its worMly haunts to solitude and

renounces the unveiling of the secrets of Nature. But as

recompense, mathematics is less bound to the course of worldly
events than physics. While the quantum theory can be traced

back only as far as 1900, the origin of the theory of groups
is lost in a past scarcely accessible to history; the earliest

works of art show that the symmetry groups of plane figures

were even then already known, although the theory of these

was only given definite form in the latter part of the eighteenth

and in the nineteenth centuries. F. KLEIN considered the

group concept as most characteristic of nineteenth century

mathematics. Until the present, its most important application

to natural science lay in the description of the symmetry of

crystals, but it has recently been recognized that group theory

is of fundamental importance for quantum physics; it here

reveals the essential features which are not contingent on a

special form of the dynamical laws nor on special assumptions

concerning the forces involved. We may well expect that it is

just this part of quantum physics which is most certain of a

lasting place. Two groups, the group of rotations in 3-dimen-

sional space and the permutation group, play here the principal

role, for the laws governing the possible electronic configurations

grouped about the stationary nucleus of an atom or an ion are

spherically symmetric with respect to the nucleus, and since the

various electrons of which the atom or ion is composed are

identical, these possible configurations are invariant under a

permutation of the individual electrons. The investigation of

groups first becomes a connected and complete theory in the

theory of the representation of groups by linear transformations,

and it is exactly this mathematically most important part

which is necessary for an adequate description of the quantum
mechanical relations. All quantum numbers, with the exception

of the so-called principal quantum number, are indices character-

izing representations of groups.

Pure Mathematical Physics



xxii THE THEORY OF GROUPS

This book, which is to set forth the connection between groups

,and quanta, consists of five chapters. The first of these is

concerned with unitary geometry. It is somewhat distressing

that the theory of linear algebras must again and again be

developed from the beginning, for the fundamental concepts

of this branch of mathematics crop up everywhere in mathe-

matics and physics, and a knowledge of them should be as

widely disseminated as the elements of differential calculus.

In this chapter many details will be introduced with an eye

to future use in the applications ;
it is to be hoped that in

spite of this the simple thread of the argument has remained

plainly visible. Chapter II is devoted to preparation on the

physical side
; only that has been given which seemed to me

indispensable for an understanding of the meaning and methods

of quantum theory. A multitude of physical phenomena, which

have already been dealt with by quantum theory, have been

omitted. Chapter III develops the elementary portions of the

theory of representations of groups and Chapter IV applies them

to quantum physics. Thus mathematics and physics alternate

in the first four chapters, but in Chapter V the two are fused

together, showing how completely the mathematical theory is

adapted to the requirements of quantum physics. In this last

chapter the permutation group and its representations, together

with the groups of linear transformations in an affine or unitary

space of an arbitary number of dimensions, will be subjected to

a thorough going study.
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CHAPTER I

UNITARY GEOMETRY

1. The n-dimensional Vector Space

THE
mathematical field of operation of quantum mechanics,

as well as of the theory of the representations of groups,
is the multi-dimensional affine or unitary space. The

axiomatic method of developing the geometry of such a space
is no doubt the most appropriate, but for the sake of clearness

I shall at first proceed along purely algebraic lines. I begin
with the explanation that a vector j in the n-dimensional

linear space 9ft = 9ftn is a set of n ordered numbers (xl9 x2 ,#,);
vector analysis is the calculus of such ordered sets. The two
fundamental operations of the vector calculus are the multiplica-
tion of a vector $ by a number a and the addition of two vectors j

and t). On introducing the notation

these operations are defined by the equations

,
axn), j + 1)

=
(xl + y l}

The fundamental rules governing these operations of multiplica-
tion by a number and addition are given in the following table

of axioms, in which small German letters denote arbitrary

vectors and small Latin letters arbitrary numbers :

(a) Addition.

1. a + b = b-fa (commutative law).
2. (a + b) + c = a + (b + c) (associative law).

3. a and c being any two vectors^ there exists one and only one

vector I for which a + J
= c. // is called the difference c a of

C and a (possibility of subtraction)*
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UNITARY GEOMETRY

(j8) Multiplication.

1. (a + V)l
=

(aj) + (&?) t/^rf distributive law).

2. a(fej)
=

(aft)j (associative law).

3. lj = j.

4. a(j + t))
=

(aj) + (at)) (second distributive law}.

The existence of a vector =
(0, 0, , 0) with the property

need not be postulated separately as it follows from the axioms.

Affine vector geometry concerns itself entirely with concepts
which are defined in terms of the two fundamental operations
with which the axioms (a) and (j8) are concerned

;
we mention

a few of the most important. A number of vectors aly d2 , ,
dh

are said to be linearly independent if there exists between them
no homogeneous linear relation

=

except the trivial one with coefficients

i
=

0, c2
=

0, ,
ch = 0.

k such vectors are said to span an h-dimensional (linear) sub*
space 9ft' consisting of all vectors of the form

I = i<*i + &a2 + + >flh l.l)

where the f's are arbitrary numbers. It follows from the

fundamental theorem on homogeneous linear equations that

there exists a non-trivial homogeneous relation between any
h + I vectors of 9ft'. The dimensionality h of 9ft' can therefore

be characterized independently of the basis : every h + I vectors

in 9ft' are linearly dependent, but there exist in it h linearly

independent vectors. Any such system of h independent
vectors alf a2 , ,

dh in 9ft' can be used as a co-ordinate system
or basis in 9ft' ;

the coefficients glt f2
' *

', H in the representation

(1.1) are then said to be the components of j in the co-ordinate

system (alf a2 , ,
aA).

The entire space 9ft is n-dimensional, and the vectors

1
= (1,0,0,- -,0),)

e2 =(0, 1,0,- -,0

define a co-ordinate system in it in which the components of a
vector
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THE n-DIMENSIONAL VECTOR SPACE 3

agree with the
"
absolute components

" x
l

:

From the standpoint of affine geometry, however, the
"
absolute

co-ordinate system
"

(1.2) has no'preference over any other which
consists of n independent vectors of 91. We now add to the

previous axioms, which did not concern themselves with the

dimensionality n, the following dimensionality axiom :

(y) The maximum number of linearly independent vectors in 91

is n.

These axioms (a), ()8),
and (y) suffice for a complete formula-

tion of vector calculus, for if e lf C 2 , ,
e n are any n independent

vectors and J is any other vector there must necessarily exist

a linear dependence

# + #1^1 ~f~ #2^2 4"
* ' *

~f" #n^n ==

between them. Since not all the coefficients may vanish we
must in particular have a 4= 0, and consequently any vector j
can be expressed as a linear combination

=
*i*i + *2e2 + + xn*n (1.3)

of the
" fundamental vectors

"
c lf C 2 , ,

Cn . We specify j by
the set (#!, #2 , ,

xn)
of components in this co-ordinate system.

In accordance with axioms (a) and
(j8) for addition and multi-

plication we then have for any two vectors (1.3) and t)

and we arrive at the definitions from which we started. The

only but important difference between the arithmetic and

the axiomatic treatment is that in the former the absolute co-

ordinate system (1.2) is given the preference over any other,

whereas in the latter treatment no such distinction is made.

Given any system of vectors, all vectors J which are obtained,
as (1.1), by linear combinations of a finite number of vectors

<*! <*2> *"!&& f the system constitute a (linear) sub-space the

sub-space
"
spanned

"
by the vectors a.

9t is said to be decomposed or reduced into two linear sub-

spaces 9T, 9T (91
= 9t' + 9T) if an arbitrary vector can be

expressed uniquely as the sum of a vector j' of 9T and a vector

j" of 9i". A co-ordinate system in 91' and a co-ordinate system
in 91" constitute together a co-ordinate system for the entire

space 91 ;
this co-ordinate system in 91 is

"
adapted

"
to the

decomposition 91' + 91". The sum n' + n" of the dimension-

alities of 91' and 9t" is equal to n
}
the dimensionality of 91.
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4 UNITARY GEOMETRY

Conversely, if the sub-spaces 91', 9t" have no vector except
in common, and if the sum of their dimensionalities is n, then

ft = ft' + 9T.

9t' being an w'dimensional sub-space, two vectors j and t) are

said to be congruent modulo 9T :

j =
t) (mod. 9i'),

if their difference lies in 9t'. Congruence satisfies the axioms

postulated of any relation of equality : every vector is congruent
to itself

;
if J =

t) (mod. 9T) then t>
= j (mod. 91') ;

if j =
ty

(mod. $') and
ty
-

5 (mod. 91'), then j =
5 (mod. 9T). It is

therefore permissible to consider vectors which are congruent
mod. 91' as differing in no wise from one another

; by this ab-

straction, which we call projection with respect to 91', the

n-dimensional space 9t gives rise to an (n n') -dimensional

space 91. 91 is also a vector space, for from

Ji =
2, *)i

s ^2 (mod. 9T)

follow the relations

1 + )i
- + t) 2 (mod. 5R').

The operations of multiplication by a number and addition can

therefore be considered ones which operate directly on the

vectors J of 91. All vectors J of 9? which are congruent mod. 91'

give rise to the same vector j of 91. If 91' is one-dimensional

and is spanned by e the above process is the familiar one of

parallel projection in the direction of e
;

it is not necessary to

give an (n i)-dimensional sub-space of 91 on to which the

projection is made.
If a is a non-null vector, all vectors J which arise by multi-

plying a by a number are said to lie on the same r&y as a. Two
non-null vectors determine the same ray when, and only when,
one is a multiple of the other. In a given co-ordinate system
the vector o is characterized by its components a

lf 2 ,

* "

*>
a

whereas the ray a is characterized by their ratios at : a2 : : an ;

these ratios have meaning only when the components of a- do

not all vanish, i.e. only when a =4= 0.

The transition from one co-ordinate system e t
- to another e/ is

accomplished by expressing the new co-ordinate vectors e/ in

terms of the old :

n
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If xi9 Xi are the components of an arbitrary vector j in the old

and in the new co-ordinate systems, respectively, then

I = 2>< e,
= 2>*V,

t k

from which the law of transformation

follows. The requirement that the co-ordinate vectors e
fc

'

also

be linearly independent is expressed arithmetically by the non-

vanishing of the determinant of the coefficients aik . The com-

ponents of vectors j, t), in 3ft undergo the same transformation

on transition to the new co-ordinate system e/ and are said to

transform cogrediently.

2. Linear Correspondences. Matrix Calculus

The formula (1.4) can, however, be otherwise interpreted;
it is the expression of a linear or affine correspondence or

mapping of the space 9ft on itself. But for this purpose it

will be found more convenient to interchange the roles of the

accented and the unaccented co-ordinates. On employing a

definite co-ordinate system e,-,
the equation

*/ = <*** (2.1)
*=i

associates with an arbitrary vector J with components xi a vector

j' with components #/. This correspondence A : J -> j' of 9ft on
itself can be characterized as linear by the two assertions : if

j, ty go over into j', t)',
then ag goes over into ag' and g + t) into

j' + ty'-
Linear correspondences therefore leave all affine rela-

tions unaltered
;
hence their prominence in the theory of affine

geometry. In order to show that these two conditions fully
determine the linear correspondence (2.1), consider the following :

if a correspondence A which satisfies these conditions sends the

fundamental vector e
fc
over into

, (2-2)

then, in consequence of the above requirements,

E =

goes over into

' ^

Pure Mathematical Physics



6 UNITARY GEOMETRY

On substituting (2.2) in this equation we see that the new vector
'

has in the co-ordinate system e the components #/ obtained

from the components #t
- of by means of (2.1). It has become

customary in quantum physics to call the linear correspondences
of a vector space 9ft operators which operate on the arbitrary
vector of 9ft.

Let A, B be two linear correspondences, the first of which
sends the arbitrary vector over into

' = A%, while the second

sends
'

into j" = Eg = B(A$). The resultant correspondence

C, which carries directly into ", is also linear and is denoted

by (BA) (to be read from right to left !} :

(BA)i =
This

"
multiplication

"
satisfies laws which are similar to those

of multiplication of ordinary numbers
;

in particular, the as-

sociative law

C(BA) = (CB}A

is here valid, but the commutative law is not in general
AB =(= BA. The "

1
"

in this domain, which we here denote by
1, is the identity, i.e. that correspondence which associates every
vector with itself : -> . Hence

Al = lA = A.

The correspondence A is then and only then reversible in case

it is non-degenerate, i.e. if it carries no non-vanishing vector into

the vector 0, or if distinct vectors are always carried over into

distinct ones. The algebraic condition for this is the non-

vanishing of the determinant
\a ik \

= det A
;

there then exists

the inverse correspondence A~* :

AA~ l = A- 1A = 1.

The multiplication theorem for determinants states that

det (BA) = det B det A.

Not only can we "
multiply

" two correspondences, we can

also
" add "

them. This concept of addition arises quite natur-

ally : if the arbitrary vector is sent over into / by A and-into

J2

'

by 5, then that correspondence which sends into / + 2'
*s

also linear and is denoted by A + B :

(A

We may also introduce multiplication by an arbitrary number
a : aA is that correspondence which sends into a(A$. Addition

and multiplication by a number obey the same laws as the
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analogous operations on vectors. Addition is commutative,
and has as its inverse subtraction. The role of is played by
the correspondence which transforms every vector j into the
vector 0. Addition obeys the distributive law with respect to

multiplication :

(A + B)C = AC + BC,

(aA)C = a(AC) }

C(A + B) = CA + CB,
C(aA) = a(CA).

Before proceeding to the arithmetical expression of these

operations in a given co-ordinate system, we consider another

natural generalization. We can map an w-dimensional vector

space 91 linearly on an n-dimensional space (3
;

this is accom-

plished when with each vector j of 91 a vector
t)
of (3 is associated

in such a way J ->
t) that from y x

->
ty l9 2 -*

ty* it follows that

?i + 2 -> h + *h-

: J -->
t)

is expressed by equations ofSuch a correspondence
the form

, n) (2.3)

where # lf ,
xm are the components of J in a given co-ordinate

system in the space 91 and y l9 , yn have the corresponding

interpretation in @. With this correspondence A there is

associated the matrix

a21

a nl an2 . . . a nr

with n rows and m columns, and which we also denote by
the same letter A. The first index indicates the row and the

second the column to which a ki belongs. We can also add corre-

spondences of the same space 91 on the same space @. Addition

and multiplication by a number is accomplished on matrices by
subjecting their n m components to these operations : if

^ = ||aw ||
and B=\\bk< \\

then
aA =

||
a aki ||,

A + B =
\\
a ki + bki ||.

If we have a third (p-dimensional) vector space 5C, the consec-

utive application of the correspondences A : ->
t)
of 9t on @ and

B : t)
~> J of @ on 2 gives rise to the correspondence C = BA : g -> 3

of 5R on 2. This composition is expressed in terms of matrix

components by the law

= b l1eaki (
ls=l '*>' '' p

] (24)
Vt=l, 2, ,

m) ( '
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8 UNITARY GEOMETRY
B has p rows and n columns and A n rows and m columns

;
the

composition of matrices is possible when the first factor B has
the same number of columns as the second factor A has rows.
The component or element cu ,

which is found at the intersection
of the /

th row and the t
th

column, is formed in accordance with

(2.4) from the components in the /
th row of B and the z

th column
of A. An important special case is that in which % is the same
space as 9t

;
A is then a correspondence of Sft on @, B of @ on 9t.

Already here concepts of the theory of groups play an important

FIG. i.

role
;
on beginning Chapter III, which deals with the theory of

groups, the reader should return to the matter here discussed
as an illustration.

The matrix calculus allows us to express the formulae for
a linear correspondence, such as (2.3), in an abbreviated form.
We do this by denoting by # that matrix whose only column
consists of the vector components xl} x2} ,

xm ; similarly
for y. In accordance with the rule (2.4) for the composition of

matrices, equations (2.3) can be written

y = Ax. (2.5)

Pure Mathematical Physics



LINEAR CORRESPONDENCES 9

This form is particularly useful in examining the effect on the

matrix A of a linear correspondence of a space 9t on a space @
when the original co-ordinate systems are replaced by new ones.

If this change of co-ordinates is effected by the transformations

Xi = SiiXt or x = Sx' in 9t,

j

jk = H^khjh r y r=: ^y' ^n @
h

then from (2.5)

TV - ASx' or / - (T'
l

AS)x
f

.

FIG. 2.

The same correspondence in the new co-ordinates is therefore

expressed by the matrix

A' - T~ 1AS. (2.6)

Let us now return to the linear correspondence A of a space

9t on to itself. If 91' is a linear n'-dimensional sub-space of 9R*

we say that A leaves 9t' invariant if it carries any vector of 9t',

over into a vector of 3t'. If the co-ordinate system is so chosen

that the first n' fundamental vectors lie in 9t', the matrix of

a correspondence which leaves SR' invariant will assume the

Pure Mathematical Physics



10 UNITARY GEOMETRY

form given by Fig. I. All elements in the rectangle of ri columns

and n n' rows denoted by zeros in Fig. I, vanish. A contains

a correspondence of 91' on to itself and at the same time a corre-

spondence of the space 91, arising by projecting 91 with respect
to 3t', on to itself. The matrices of these correspondences con-

sist in the shaded squares. If 91 is decomposed into 9^ + 9t2

(n x + ^2 = n
}>

and if the correspondence A leaves both sub-

spaces 9^ and 9R2 invariant, then A is completely reduced
into a correspondence of 9ft t on itself and a correspondence of

9^2 n to itself. If the co-ordinate system is adapted to the

decomposition 9t t + 9U, the matrix A is completely reduced into

two square matrices arranged along the principal diagonal as

in Fig. 2. The unshaded rectangles are empty the elements

situated in these portions are all zero.

Let the n-dimensional linear space 91 be decomposed into

sub-spaces 9^ + 9t2 -f
'

*, 9Ra having the dimensionality na
;
n is

then equal to the sum n + n2 + * ' ' Any vector j can then be

written uniquely as the sum of components $ l + 2 + ' ' * which
lie in the sub-spaces 9^, 9t2 >

' ' ' The association ~> is

a linear correspondence Ea of 91 on to 9ta. Given a correspond-
ence A : j ~>

j' of 9t on to itself, we consider that linear corre-

spondence (XJajs which carries an arbitrary vector j of 9^ over

into the component a
'

in 9ta of '. We call [A]^ the portion of
A in which 9t<x intersects 9^. This terminology arises from the

matrix representation of A
;
on adapting the co-ordinate system

to the decomposition 9?i + 9^ + * ' * the set of variables x
it

or

rather their indices i which number the rows and columns of

the matrix, is broken up into segments of lengths wa (a
=

1, 2, ).

The matrix A is thereby divided into the single rectangles

[A]*p in which the ath
set of rows intersects the th set of columns,

and which consist of na n
ft
elements.

If A is the matrix of a correspondence of 9? on to itself in

a given co-ordinate system, and A' its matrix in a co-ordinate

system obtained from the first by means of the reversible

transformation 5, then in accordance with (2.6)

A' = S~ 1AS. (2.7)

The search for an invariantive characterization of correspondences

may be formulated algebraically : to find expressions which
are so formed from the components of an arbitrary matrix that

they assume the same value for equivalent matrices, i.e. for

matrices A, A' between which a relation (2.7) exists. The way
in which this can be accomplished is indicated by the related

problem of finding a vector j 4= which is transformed into
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LINEAR CORRESPONDENCES 11

multiple A of itself under the influence of A. The column %

f the components of must then satisfy the equation

he = Ax, or (Al A)x = 0.

Jut n linear homogeneous equations in n unknowns have a

on-vanishing solution only if their determinant vanishes
;

the

lultiplier A is therefore necessarily a root of the
"

characteristic

polynomial
n

/(A)
= det (Al

-
A) (2.8)

i A This polynomial is an invariant in the above sense, for

rom (2.7) or SA' = AS it follows that

5(A1
-

A') - (Al
- A)S,

whence by the theorem concerning the multiplication of deter-

ninants

det S det (Al
-

A'} = det (Al
- A) det S.

Since the determinant of the reversible transformation 5 cannot

ranish, we can divide by it and obtain the required identity

|A1- A'\ s |A1- ^|.

The characteristic polynomial is of degree n in A :

/(A)
= A - ^A"-

1 + ' ' ' sn

vhose coefficients, certain integral functions of the elements

i ik} are invariants of the correspondence A. The " norm
"

sn

s merely the determinant of A. The first coefficient s^ the

Sl
= au + a 22 + ' ' + ann = trA (2.9)

s of more importance, as it depends linearly on the a ik :

tv(A l + A 2)
= trA l + trA 2 .

If A is a linear correspondence of the m-dimensional vector

;pace SR on the ^-dimensional space @, and 5 is conversely a

linear correspondence of (3 on 9ft, then we can build the corre-

spondences BA of 9ft on to itself and AB of on to itself. These

two correspondences have the same trace

tr(BA) - tr(AB) (2.10)

'or, in accordance with the rule of composition (2.4) and the

definition (2,9) we have

tr(BA) = Sb lk a ki . tr(AB) = au b lk

i, k i, k
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where i runs from 1 to m and k from 1 to n. The special case

in which A and B are both correspondences of 9t on to itself

naturally deserves particular consideration.

3. The Dual Vector Space

A function L(j) of the arbitrary vector of the form

' ' + <*nXn (3.1)

is called a linear form. This concept is invariant in the sense of

affine geometry : it can be defined by means of the functional

properties

L(J) = Lfe), Lfe +
It is obvious that the expression (3.1) has these properties, and

conversely, on introducing a co-ordinate system e t
- and setting

j = 27^6*, it follows that

On going over to another co-ordinate system such that the

components #, of an arbitrary vector undergo the transforma-

tion (1.4), the linear form becomes

the coefficients a/ of which are related to the original a
t by the

equations

a*' = JLX-* a t
-.

i

The coefficients a,- 0/ a linear form are said to transform contra*

grediently to the variables x
{

.

It is, however, not necessary to consider the a
t
- as constants

and the xi as variables. When the a, do not all vanish the equa-
tion L(j)

= defines a
"
plane,

n
i.e. an (n l)-dimensional

sub-space ;
a vector lies in the plane if its components satisfy

this equation. But on the other hand we can ask for the equation
of all planes which pass through a given non-vanishing vector

;

the Xi = %i
Q
SLYG then constants and the o^ variables. It is there-

fore most appropriate to consider the two sets (x lt x2 , ,
#n),

(i, <*2,
' '

', n) in parallel.
We therefore introduce in addition to the space 3t a second

n-dimensional vector space, the dual space P. From the com-

ponents (flf 2 >

' '

> ^) of a vector of P and a vector

(
xit X2>

* "

"> ^) of 91 we can construct the inner or scalar product

fi *! + &* + + &*,. (3.2)
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This product has, by definition, an invariantive significance, for

when 9t is referred to a new co-ordinate system by means of

a transformation of the xt the variables f< of the dual space P
undergo the contragredient transformation. This dual space is

in fact introduced in order to enable us to associate a contra-

gredient transformation with each one-to-one transformation.

To repeat, two linear reversible transformations

% = Ax', f = Af (3.3)

are contragredient with respect to each other if they leave (3.2)

unaltered :

A vector J of 91 and a vector of P are said to be in involution

when their product (3.2) vanishes. A ray in 91 determines a

plane in P, i.e. the plane consisting of the vectors which are in

involution with the given ray, and conversely. Duality is

a reciprocal relationship.!
The dual or transposed matrix A* of a matrix A = \\aki \\

is obtained by interchanging the rows and columns of A.

A* =
||tf*J|

is therefore defined by a*k = aki} and has m rows

and n columns. We shall always employ the asterisk to in-

dicate this process. And what is its geometrical interpretation ?

Let 91 be an m-dimensional, (3 an n-dimensional, vector space ;

A : ->
t)

a linear correspondence of 91 on (3, specified in terms

of given co-ordinate systems in 91 and @ by the matrix A :

and let P, be the dual spaces. The product

k,\

where
77

is an arbitrary vector of 27 with components rj fc ,
has then

an invariantive significance. A bilinear form which depends

linearly on a vector
77

of 2 and a vector j of 9? is therefore in-

variantively associated with a linear correspondence of 9t on @,
and conversely. This gives rise, as the expression of the bi-

linear form given in parentheses shows, to a correspondence

of 2 on P, i.e. the dual A* of A. The reciprocal relation existing

between the correspondence A and its dual A* may be expressed

f In the theory of relativity it is usual to call vectors in 9ft and P contra-

variant and covariant vectors, respectively.
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14 UNITARY GEOMETRY

as follows : if J is an arbitrary vector in 9t and
77

is an arbitrary

vector in 27, then the product of the vectors A$ and
77

is equal
to the product of j and A*r). The dual correspondences obey
the linear laws

(A, + A 2)*
- AS + Af } (aAY ^a-A*.

If A is a correspondence of 91 on and B a correspondence of

@ on 2, then since

(BA)* = ^4*5* (3.5)

ZL4 maps 9? linearly on SE, and /!** maps the dual space T
of Z on the dual P of 9t.

We have agreed once and for all to consider the set

x i> X 2>
' *

*i
xn f components of a vector j as a column

;
the

inner product of the vector j in 9i with the vector f in P can

therefore be written in matrix notation as *x or #*. The
transformations (3.3), from the first of which it follows that

x* = x'*A*, are consequently contragredient to one another if

^*A = 1 or A = (A*)~
l

, (3.6)

and we have arrived at an explicit expression for the contra-

gredient transformation.

Let Sfl' be an n'-dimensional sub-space of 31 9R n . All

vectors of P which are in involution with the totality of vectors

of 9T obviously constitute, in consequence of the simplest
theorems on linear homogeneous equations, an (n

-

tt')-dimen-
sional sub-space P' of P. And from this we are led immediately
to the result that if a correspondence A of $1 on itself leaves the

sub-space 9T invariant, then the dual correspondence A* of P on

itself leaves the associated sub-space P' invariant.

Let 9ft be decomposed into two or more sub-spaces

9fti + 9ft2 + * * * of dimensionalities n l9 n 2 , ,
and let the.

sub-space of P which consists of all vectors in involution with
all vectors of 9R2 + 9t3 + 'be denoted by P ly the dimension-

ality of which is also nv Defining P 2 ,
P 3 analogously, we arrive

at the decomposition P = Pl + P2 + ,
for the sum of a

vector of P
3
a vector of P 2 , etc., can only be, zero when each

of the individual summands vanishes. In order to prove this

latter statement, we note that if the sum is then the first

summand belongs to P l as well as to P 2 + P 3 + * *

*>
i.e. it is

in involution with all the vectors of 9R2 + 9t 3 + - as well as

with all those of 9^, and is therefore in involution with all the

vectors of 9t. But this is only possible if this first, and therefore

any, summand is zero. P l can be considered as the space dual

to Sflj, for if g is an arbitrary vector in 9^ and
TJ

a vector in P
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with components ij
(flp) in the various Pa ,

then the product of

j and
77

is equal to the product of j and
TJ

(I)
.

If a correspondence A of 91 on itself leaves the n'-dimensional

sub-space 9T invariant, then the (n ri] -dimensional sub-space
P' is invariant under the dual correspondence A* of P on itself.

If 3t is decomposed into 9fti + SR2 + * * * and if A leaves each

of the sub-spaces 3ta invariant, then A* leaves each of the sub-

spaces Pa invariant. If A is any correspondence in 9R and [A]ap

that portion in which 3R* intersects
9ft0,

then the portion [A*] ft(X

of A* in which P^ intersects Pa is dual to [A\^ :

[^*]*=MV (3.7)

[A] a ft maps 810 on 9R and [A*]^ maps the dual space Pa on P^.
All these results are conceptually evident, but can be seen

even more readily directly from the matrices on adapting the

co-ordinate system to the decomposition 3^ + 9t2 + .

4. Unitary Geometry and Hermitian Forms

The metric is introduced into affine geometry by means of

a new fundamental concept : the absolute magnitude of a vector.

In Euclidean geometry the sum of the squares

S
= *! + *, + + * (4.1)

of the components of a vector =
(x l9

x2 , ,
xn )

is taken as

the square of its absolute value. The only co-ordinate systems
which are then equally permissible are the Cartesian systems,
in which the square of the absolute value of is given by (4.1)

in terms of the components # t ;
the range of values which the

components may here assume is taken as the continuum of all

real numbers. But the content of the preceding paragraphs
is not bound to this choice

;
the only requirement is, in fact,

that the range of permissible values constitute a
"

field
"

in

which the four fundamental operations (excluding division by
zero) can be performed. We shall hereafter consider the con-

tinuum of all complex numbers as the range of values which our

components may assume. The expression (4.1) loses its definite

character in this domain
;

the sum of the squares can vanish

without implying that each term is zero. It is therefore desirable

to replace the quadratic form (4.1) by the
"
unit Hermitian

form "

' ' + *n*n (4/2)

where x denotes the complex conjugate of a number x. The
value j

2 of (4.2) will be taken as the square of the absolute
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magnitude of the vector
jc
=

(xlt x2 , ,
xn) and the correspond-

ing bilinear form

as the scalar product (jt)) of the two vectors j and t)
=

(yii y2>
* *

% yn) A co-ordinate system is said to be normal
when the square of the absolute magnitude of a vector j is

expressed in terms of its components x i
in this co-ordinate

system by (4.2). In a normal co-ordinate system e, these

components are the scalar products

*t
=

(e*). (4.3)

The transformations which lead from one normal co-ordinate

system to another such, which therefore leave the form (4.2)

invariant, are called unitary transformations.^
The conditions which characterize unitary transformations

are entirely analogous to those for orthogonal transformations,
with which we are familiar from the elements of analytic geo-

metry. Let x = Sx' be such a transformation
;

under the

influence of 5 the fundamental metric form (4.2) goes over into

x'*S*Sx'. S is therefore unitary if and only if S*S = 1
;

the

fact that det 5 4= follows immediately from this. Indeed,
since a matrix 5 and its transposed S* have the same deter-

minant, it follows that the determinant of a unitary transformation
has the absolute value 1 : jdet S|

2 = 1. Those conditions may
be expressed by the assertion that S* is the matrix S~ l

reciprocal

to 5, and therefore not only S*S = 1 but also 55* --= 1. The
first of these equations states that the sum of the squares of

the absolute values of the elements of a column is 1 and that

the sum of the mixed products 2s ris rk of two different columns

(i 4= k) is
;

the second equation contains the same assertion

for the elements of the rows.

We carry over the terminology usual in Euclidean geometry.
In particular, the vector t)

is said to be perpendicular to j if

the scalar product (jty)
vanishes. In virtue of the symmetry law

(%) = (*T)

perpendicularity is a reciprocal relationship. There exists no

vector a, except a = 0, to which all vectors are perpendicular ;

in fact, a = is the only vector which is perpendicular to itself.

Normal co-ordinate systems can be characterized by the fact

t The name "orthogonal" has been used in the physical literature to
denote these transformations, but in mathematics it is necessary to have
different names for these two different concepts.
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that for them the scalar products of the fundamental vectors

e< among themselves are

On comparing the fundamental metric form (4.2) with (3.2)
it is seen that the unitary space 9t can be characterized by the

fact that its conjugate complex 91 coincides with its dual P, or

more precisely, that the conjugate complex of a vector j can
at the same time be considered as its dual. We found that with
a correspondence A of an m-dimensional unitary space 91 on
an n-dimensional is associated in an invariant manner the

correspondence A* of the dual space S on the dual P, As a

consequence of the equation P = SR for unitary spaces

A* - A

is a correspondence of on 9? ; we call it the
" Hermltian

conjugate of A." A A is a, correspondence of JR on itself,

A A of @ on itself. A correspondence (5 which carries the

general vector j over into j'
= 5j is unitary if it leaves the

absolute magnitude of j unaltered : j'*
-
j
2

. Two configura-
tions consisting of vectors, either of which can be obtained from
the other by a unitary transformation, are congruent in unitary

geometry ;
i.e. unitary geometry is the theory of those relation-

ships which are invariant under an arbitrary unitary transforma-

tion. The characteristic property of such transformations is

expressed in terms of the matrix calculus by either of the two

equations

55-1, 55-1.

Let 91' be an m-dimensional linear sub-space spanned by
the linearly independent vectors a,, at , ,

Q m . We consider

a vector J as belonging to the sub-space 91" if and only if it is

perpendicular to 9t', i.e. to all the vectors of 9T
;
such a vector

must therefore satisfy the equations

From these it follows that 91" is (n m)-dimensional. The

relation between 91' and 91" is a reciprocal one : every vector

of 91" is perpendicular to every vector of 9T and conversely.

We then have 91 = 9t' + 9T. for if the sum j' + j" of a vector

j' in SR' and a vector j" in 9T vanishes then j'
- -

j" is a

vector which belongs to both sub-spaces and is consequently
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perpendicular to itself, and this can only occur if j'
= 0. A

unitary correspondence which leaves 9ft' invariant will also leave

9ft" invariant since the relation of perpendicularity will not be

destroyed by such a transformation. In dealing with unitary

correspondences or transformations it is therefore always possible
to find an invariant sub-space 9ft" associated with a given invariant

sub-space 9ft', such that 9ft = 8T +Dft". The previous remarks

about projection suggest that here in the unitary geometry we

identify the space generated by projecting 9ft with respect to

9ft' with the sub-space 9ft" : we project on to the space 91" per-

pendicular to 9ft'. To this end we remark that among all vectors

in 9ft which are congruent mod. 9ft' there is one (a) which lies

in 9ft"
;
we then have

(a-a) = (a), (a + b)
=

(a) + (b).

With an arbitrary linear correspondence A

*)-+*)'
= At): y/ = 2>y* (4.4)

k

of 9ft on itself is, as we have seen, associated a bilinear form

ik

which depends linearly on a vector in P and a vector
t)

in 9ft.

In unitary space we can therefore associate the form

ik

depending linearly on t(
=

(y t-)
and j (#<), with the correspond-

ence (4.4). It is in fact the scalar product of and At). The

special case in which

A = A or A(\), j)
=

Afa, t))
or aki

= aik (4.5)

bears the name of the French mathematician Hermite. The

correspondence (4.4) is consequently Hermit/an if the scalar

product of J with A
ty

is the conjugate complex of the scalar

product of t)
with A J. On identifying t) with we obtain the

" Hermitian form
"

A(l} = A(i,i} = Saik xi cck} (4.6)

i.e. the scalar product of j and A% ;
in consequence of (4.5) its

value is real. An Hermitian form or correspondence A is said

to be non- degenerate if there exists no vector J, except J = 0,

whose transform A% vanishes It is positive definite if the value

of the form A fa) > for all vectors j 4= ;
a positive definite

form is non-degenerate.
The fundamental metric form (4.2) is one such positive
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definite Hermitian form, the
"
unit form/' the coefficients of

which consist of the numbers

(i * Kf

On introducing an arbitrary co-ordinate system a
t (i
=

1, 2, , n)
into the n-dimensional space, the absolute magnitude of an

arbitrary vector

I = Xl <*1 + *2 <*2 + ' ' ' + * <*n

is given by
Z^-S&fcX,**, g, fc

=
(a,at).

The expression for j
2

is accordingly always a definite Hermitian
form

; conversely, any positive definite Hermitian form G(jr)

could be taken as the fundamental metric form. To show this

we employ the associated Hermitian bilinear form G(j, ty)
to

carry through the following procedure, which is patterned after

the step-by-step construction of a Cartesian co-ordinate system.
Choose any non-vanishing vector t l ;

since G(t^) > we may,
on multiplying e x by an appropriate numerical factor, normalize

it in accordance with the equation G(ti) 1. When the process
of constructing a system of unitary-orthogonal vectors el

G(e,, e*)
- S

t *

has been carried through m steps, i = i, 2, ,
m

}
the next

step is accomplished by choosing a solution j em+1 of the

m < n homogeneous linear equations G(e,-, j)
= for the n

unknown components of the vector J 4= and normalizing it

in accordance with the equation G(cm+1 )
= 1. The procedure

comes to an end after n steps ;
we then have n vectors

e i> e 2>
' * ' e n of such a kind that

G(, J)
= fi^i + ^2^2 + ' ' + n #n

where
^ ^1^1 + x*e 2 + + ^n e n .

It follows from the equations themselves that can only vanish

when all of its components x
t vanish, and consequently the e<

are linearly independent and constitute a co-ordinate system
in K.

The transition from affine to metric geometry can accordingly
be accomplished by the introduction of the axiom :

(S) The square of the absolute magnitude of a vector is a real

number j
2 which is a positive definite Hermitian form in the

components of$.
These last considerations are useful in another connection.

If 91' is a linear sub-space of 9i we can employ the construction
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used above to find m vectors t lt C2 , , e,n in 9ft' which span 9ft'

and are mutually unitary-orthogonal in the sense of the equations

(e,e*)
=

S,fc. By continuing the construction we can supplement
these m fundamental vectors by n m additional ones

Cm+i>
' '

> Cfi so that the two sets together form a co-ordinate

system for the entire space 9ft. We can therefore adapt our

normal co-ordinate system to the separation of 9ft' out of 9ft or

to the decomposition of 9ft = 9ft' + 9ft" into two perpendicular

sub-spaces.
Since the correspondence A of 9ft on to itself is invariantively

connected with the Hermitian form A in
9ft,

we may speak of

the product BA of two Hermitian forms A, B in
9ft,

but this

product is not in general Hermitian as

BA = AB = AB.

The trace of an Hermitian form or correspondence A is real.

The positive definite expression

tr(AA) = Z\aik \* (4.7)
t, k

is of particular importance. When 9ft is decomposed into

mutually perpendicular sub-spaces 9fta (a
=

1, 2, )
the section

Aaip of the correspondence or form A in which 9fta intersects
9ftp

is uniquely determined
;

it is a correspondence of
9ft0

on 9fta,

and A$j }
the jSa-section of A, is a correspondence of 9fta on

9ft^.

When the co-ordinate system is adapted to the decomposition
of 9ft we have

tr (AafiAp) = tr (A B*Aa ft)
= Z\aik \* (4.8)

where in the sum z runs through the ath
,
k through the j8

th set

of indices.

Any non-vanishing vector a determines a ray a which consists

of all vectors of the form Aa, A being an arbitrary complex number.
The generating vector a can be so normalized that its absolute

value
|

a
|

= I
;

this does not, however, determine a to within

a change of sign, as in the real domain, as the normalization is

unaltered on multiplying a by an arbitrary (complex) number e

of modulus 1. We shall call the totality of vectors of 9ft the

vector field 9ft and the totality of rays the ray field 9ft. Any
non-degenerate linear correspondence A of the vector field 91

on itself is at the same time a correspondence of the ray field

9ft on itself, but this latter correspondence is unaltered by
multiplication with any non-vanishing number. A unitary

correspondence or transformation of the ray field on itself will
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2 briefly referred to as a rotation. By the symbol S' ~ S we
lall mean that the two transformations 5, S' of the vector
eld on itself differ only by a numerical factor e of modulus 1 :

' = sS, whence they both give rise to the same rotation of

le ray field.

5. Transformation to Principal Axes

The fundamental theorem on Hermitian forms is that con-

>rning the transformation to principal axes. We are here

)ncerned with the analogue of the familiar problem of finding
ic principal axes of an ellipse or ellipsoid in the ordinary

sometry of two or three dimensions. We wish to find a normal
j-ordinate system e, associated with a Hermitian form A(%) such

\al in addition to

I = *i*i -f

J
2 = Xi*i + z2*2 + + xnxn (5.1)

e also have

+ a nxn*n ; (5.2)

n

iat is, A shall be brought into the normal form (5.2) by means
[ a unitary transformation. The real numbers a^ a2 , ,

a

re called the characteristic numbers of the form A, and

,
e 2 , ,

cn the corresponding characteristic vectors.

To this end we first consider the correspondence j >
j'
= A%

id seek those vectors j =4= which are transformed into

mltiples j'
= Aj of themselves by A. We then obtain the

secular equation
"

/(A) = det (Al
- A) =

>r the multipliers A. According to the fundamental theorem of

Igebra this equation certainly has a root A = oct ; corresponding
> it a non-vanishing vector = C x can be found which satisfies

ic equation A^ = a^i, and on multiplying this vector by an

ppropriate numerical factor we may take it such that its modulus

unity. C! can then be supplemented by n 1 further vectors

;,, cn in such a way that these n vectors constitute a normal

3-ordinate system. In these co-ordinates the formulae

e,'
= A*i = a kle.k

k

>r the correspondence A require, in accordance with the

gfinition of c lt that the coefficients aail a sll
-

f
anl vanish and

iat an als Because of the symmetry conditions aki
= a ik ,
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#i2> ai3>
" *

">
am must also vanish. Hence in the new co-ordinates

the matrix A assumes the form

(5.3)

and the Hermitian form becomes

A(i) - aA*! + A' (i) (5.3)

where yl' is an Hermitian form containing only the n 1 variables

#2 X3f
' '

% #n Repeating this process, or calling on the method
of mathematical induction, we establish the validity of the

fundamental theorem stated above.

The characteristic polynomial of (5.2) is

det (Al -A) = (A
-

ai)(A
- a a) (A

- a n).

From this it follows that the characteristic numbers a 1?

a 2>
* *

*>
an including their multiplicity, are uniquely deter-

mined by the Hermitian form A
;

their sum is the trace of A.

What can we say concerning the characteristic vectors ? Let

a be a given real number
;

the vectors which satisfy the equa-
tion A$ = aj constitute a linear sub-space 9t(a) of

3ft, the

characteristic space belonging to a. When the normal

co-ordinate system e
t
- is so chosen that A is in the normal form,

the equation A% aj is, in terms of its components,

from which it follows that 91 (a) is spanned by those vectors e,

for which oc<
= a. If, for example, the three roots o^, a2 ,

a 3
= a

while all the others are different from a, the characteristic space

9t(oc) is 3-dimensional. If none of the characteristic numbers

a,- is equal to a, 91 (a) consists only of the vector 0. This again
characterizes the characteristic numbers, including their multi-

plicity, in a way which is independent of the particular co-

ordinate system chosen, and in addition it characterizes the

corresponding sub-spaces 9i(a). 3? is thus decomposed into the

characteristic spaces 91(a) : 91 = JlR(a) ; only a finite number
a

of terms occurs in this sum, i.e. those for which a is a character-

istic number of A. A complete co-ordinate system Cj, e 2 , ,
C n

for the entire space 9t can be obtained by choosing a normal
co-ordinate system in each non-null sub-space 9t(a). The
normal form (5.2) is undisturbed on subjecting the variables
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Xi associated with the same characteristic number <x
f
= a to an

arbitrary unitary transformation.

If, for example, a is a triple characteristic number

al
== a2 a3 a

while the remaining <x
t 4= a, then xfa + ^2e 2 + ^3^3 is

normal projection Ja of the vector j on 91(a) and

is the scalar product of ja with itself. The equations (5.1),

(5.2) may then be written in the invariant form

?=ZE&), A(i} = Z-E,(z). (5.4)
a a

9T being a sub-space of 9t, any vector can be uniquely
broken up into j' + o where j' lies in 9T and is perpendicular
to 91'. The "

orthogonal projection
"

-> 5'
=

/J'j is a linear

correspondence which obviously has the property

E'E' = E', (5.5)

for the projection of j' on 9?' is simply j' itself. Furthermore,
the operator

'

is Hermitian, for the scalar product of
t)

into j'

is equal to the scalar product of
i)'

into j', where ^' is the projection
of t)

on 9t'. (The Hermitian form E'($) is accordingly the square
of the absolute value of j'.) We shall call Hermitian forms

which satisfy equation (5.5) idempotent.
When the sub-spaces 9t'. 9R" are orthogonal, the two corre-

sponding projection operators E', E" satisfy the equations

E'E" = 0, E"E' - 0, (5.6)

for E' ("jr) is the component of "j lying in the space 9T per-

pendicular to ". Idempotent operators which satisfy these

equations are said to be independent. The second equation is,

moreover, a consequence of the first, as may be seen on going

over to the Hermitian conjugate : E"E' = 0. If 9t is decom-

posed into several mutually orthogonal sub-spaces 9?'+9t"+ *,

then

E
= E'l + E"i + . (5.7)

It is easily shown that the converses of all these assertions

are also valid. If E' is an idempotent operator and
" = 1 -

',

all vectors of the form E'j constitute a linear sub-space 91' and

all vectors of the form E"j a sub-space 91". The equation

E'E" = E'E" - '(1
-

E'}
-
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shows that the scalar product of a vector 'j in 9T and a vector

"ty in 9ft" is zero : xE'E"y 0. The decomposition of a

vector J into a component lying in 9V and one perpendicular
to 81' is accordingly expressed by

If the two idempotent forms
',
E" satisfy the equation (5.6)

then, as we have just seen, the two corresponding characteristic

spaces 81', 9?" are mutually perpendicular. If the sum (5.7)

consists of independent idempotent forms, then by the above

the corresponding mutually perpendicular sub-spaces 9T, 9t"

exhaust the entire space 3?.

The theorem on transformation to principal axes can accord-

ingly be stated : An Hermitian form A associates with the real

numbers a mutually independent idempotent Hermitian forms E*.

such that

Ha, is non-vanishing for only a finite member of values a.

A correspondence A can be reiterated :

AA = A 2
,

A*A = A*,

and we can accordingly obtain polynomials

f(A) - cQl + c^A + c*A* + + chA*

in A with numerical coefficients c. On reiterating (5.8) h I

times

Ah = Z**Ea
a

whence for the general polynomial /

f(A) = /()- (5.9)

The characteristic numbers of f(A) are therefore the values of

the polynomial /(a) for the characteristic numbers a of A. This

suggests defining the Hermitian form f(A), where /(a) is any
real function of the real variable a, by means of the equation

.

Given two Hermitian forms A, 5, under what conditions can

they be brought simultaneously into diagonal form, i.e. when is

it possible to find a normal co-ordinate system in which
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A necessary condition is that they commute : BA =- AB, for if

A and B are in the normal form (5.10) BA as well as AB is

the diagonal matrix with elements ^a< =- a^. This condition

is also sufficient ; to prove this, chqose a normal co-ordinate

system in which A is already in normal form. The equation
BA = AB requires that the matrix B =

\\b ilc \\ satisfy

b ik a* <x.ibik or (a, xk)b ik
= 0. (5.11)

We divide the indices i, the fundamental vectors e and the

variables x+ into classes by considering i and k to be of the same
class if a t

- = a*. Equation (5.11) states that bik
= when

i and k belong to different classes. B is consequently decom-

posed into smaller matrices B'
}
B" aligned along the principal

diagonal, corresponding to the way in which the a,- are distri-

buted in classes a', a", ;
the correspondence B consequently

leaves each of the characteristic spaces 9*(<x'), 9t(oc"), of A
invariant. But we can then choose a normal co-ordinate

system in each of these characteristic sub-spaces 3ft(a) in such

a way that the Hermitian correspondences 5', B" in them are

referred to principal axes
;

the normal form of A is undisturbed

by this procedure.
This process can immediately be applied to any number of

Hermitian forms : Any number of Hermitian forms can be brought

simultaneously into normal form if and only if they commute
with one another. By a slight modification we can further

extend this theorem to an arbitrary finite or infinite system of
Hermitian forms. This will be briefly discussed here, although
in general the consideration of systems of forms or correspond-
ence is postponed until Chap. III. Let the space 91 be decom-

posed into mutually perpendicular sub-spaces 9T, 91", in

such a way that each correspondence of the system 27 takes

place in these sub-spaces ;
on adapting the co-ordinate system

to this decomposition each Hermitian matrix A of 2 consists

of sub-matrices A
,
A"

, aligned along the principal diagonal.
If all the A' are already multiples of the unit matrix 1 in 91'

and similarly for all A", ,
our goal is reached, for each corre-

spondence A of the system then transforms 9t' into itself and
is a simple multiplication in it

; similarly for 91", . But if

this is not the case let A be a correspondence of the system
which is not merely a multiplication in the sub-space 9T. On
transforming the constituent A' of A to principal axes, 91' is

decomposed into characteristic spaces 9V + 9V + * ' ' of A', of

which there are at least two. For any Hermitian matrix X
of we have A'X' = X'A', from which it follows, as we saw

above, chat X' transforms each of the sub-spaces 9V, 9V, * * *
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into itself. The decomposition 9T + 91" + can thus be

further reduced to the decomposition (91 1

/ + 9V + * * *

) +
91" + ' * '

Proceeding in this way we finally reach our goal
after at most n steps, proving :

The Hermitian forms of any system can be simultaneously

referred to principal axes if they all commute with one another.

The theory developed above for Hermitian correspondence is

valid as it stands for unitary transformations. S being any unitary

operator, a normal co-ordinate system e, can be introduced in such

a way that S carries each of the fundamental vectors e, over into

a multiple cr
t
e

t of itself. The characteristic numbers tr
t
of S are

numbers of modulus 1. In these co-ordinates the matrix of 5
is a diagonal matrix, the elements in the principal diagonal
of which are the numbers or,-.

The proof is quite analogous. We again start with the

secular equation
det (o*l S) =

and consider the root c^. There then exists a vector c, of modulus
1 which is transformed into c^ by the correspondence S. Sup-

plement e l with n 1 further vectors C 2 , ,
C n so that these n

vectors form a normal co-ordinate system. In these co-ordinates

the matrix
\\sik \\

of the correspondence S :

is again of the form

s \\
=

^i, $21
= *'' = sm = -

Since S is unitary the sum of the squares of the moduli of these

elements of the first column must be unity, whence \a^ 1.

Similarly the sum of the squares of the moduli of the elements

in the first row must also be 1 :

but since
l^i)

2 = 1 it follows that

*12
= ' ' ' = *ln = 0.

The matrix 5 is now broken up into a 1-dimcnsional al and
an (n l)-dimensional S' as in (5.3) ;

the truth of the above

theorem then follows immediately by induction.

The further results can be obtained in exactly the same way
as above for Hermitian forms. The characteristic numbers o\,

including their multiplicity but not their order, are uniquely
determined by 5, and similarly for the corresponding sub-spaces.
If we wish to find a linearly independent system of character-

istic vectors, the fundamental vectors of each such sub-space
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may be taken as forming a normal co-ordinate system. Finally,
a finite or infinite set of unitary transformations can be simul-

taneously reduced to normal form if and only if they commute

among themselves.

6. Infinitesimal Unitary Transformations

A rigid body in continuous motion about a fixed point

performs an infinitesimal rotation in each interval dr of time.

Denoting by (dx^ dx2 , dx-^ the infinitesimal displacement of

that point of the rigid body which is at the point P(xlJ X2 ,
# 3)

at the time r, the equations of motion of the body must be of

the form

*< = ^r= Jp** (6.1)

in which the coefficients cik are constants, i.e. independent
of the particular point P under consideration. Employing a

Cartesian co-ordinate system with as origin, x^ -f- x z
2 + *a

2

must remain unchanged throughout the motion
;

this requires
that

2X^ = or rr lfc *,** = <>.

i
ar \k

Since this equation must be satisfied identically in the #,, the

matrix C ~=
\\Cik\\

which characterizes the motion must be anti-

symmetric : CM = c lk . Introducing the vector r with origin
at and terminus at the point P, and the vector c (c 2^ c 3l , 12),

equations (6.1) become
di r n

Tr
=

[TC] '

the familiar fundamental formulae for the kinematics of a rigid

body. The square brackets denote the vector product and C

the vectorial angular velocity, the absolute value and direction

of which give the angular velocity and direction of the axis of

rotation respectively.
The continuous compounding of interest offers another

example of an infinitesimal linear transformation. The interest

rate being c, a real number, the increase in the capital x in time

dr is xcdr. Radioactive disintegration is the same kind of a

process with negative c. The capital x
y
considered as a function

of the time, satisfies the equation
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and consequently increases exponentially with r. If the prin-

cipal has the value XQ at time r = 0, it will have increased to

x(r)
= X e

at time r. To obtain an alternative solution we divide, as in

the method of finite differences, the time interval r into a large
number n of equal elements r/n ;

% will increase by xcrjn in

each of these intervals .and the capital x will accordingly be

multiplied by (1 + cr/n)
n at the end of time r. The familiar

definition

#* = lim f 1 + -V (6.3)
n->oo\ n) V '

of the exponential function follows from a comparison of these

two results. But we can also solve the differential equation

(6.2) by the method of successive approximations. We take as

the th
approximation the initial value x : XO(T) = x . The

(n -f- l)st approximation is obtained from the nth
by substituting

the latter in place of x on the right-hand side of (6.2) and

integrating :

On carrying out this process we find

Xn(r)
= *

from which we obtain the familiar power series expansion

for the exponential function. The convergence of (6.3) and

(6.4) and the identity of their limits is rigorously proved by
elementary analysis.

These examples will assist in understanding the concept of an

infinitesimal unitary transformation of the w-dimensional

space 91 = 9tn ,
which we now proceed to introduce. In order

to avoid the use of infinitesimals we introduce a (purely fictitious)

time r and think of the infinitesimal linear correspondence which

carries the vector j over into j -f- rfj as taking place in the time

interval dr :
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(For the sake of brevity we refer to this simply as
"
the in-

finitesimal transformation C.
n

)
Since the transformation is

unitary, on employing a normal co-ordinate system x{ Xi must

remain unchanged :

J^'+l^-O. (6.5)
i ar k ar

On setting

the left-hand side of (6.5) reduces to the Hermitian form

Z(Ctk + Cki)XiXk
i t k

and since it must vanish identically in the x< we must have
cik + CM = 0> or the transformation C is anti-symmetric in

the sense of the equation

cik = -
CM, C=-C. (6.6)

In the real domain there exists no intimate relationship between

symmetric and anti-symmetric matrices, but the situation is

different in the complex domain. For on setting C = iH (i being
the imaginary unit V 1) it follows from (6.6) that H satisfies

the equation // //, and C is consequently i times an Hermitian

matrix. In an infinitesimal unitary rotation of a vector field the
i

velocity
~ is related to j by means of a correspondence whose matrix

is i times an Hermitian matrix. The theorem on transformation

of Hermitian forms to principal axes is accordingly the limiting
case of an analogous theorem on unitary transformations.

By repeated application of the infinitesimal unitary trans-

formation

dl = dr- Cl (6.7)

we obtain after time r

E~>!(T)=/(T)J = *'
C
S (6.8)

where the exponential function e
A for a matrix A can be defined

by either

lim
(l
+

)*A->ocA n /

or the power series

1 O-
A

_!_
A *

_i_1 +
D.
+

2i
+ ' "'

Naturally

U(r + T')
- U(r) U(r').
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Accordingly U(r) runs through all the transformations of a

1-parameter continuous group of unitary transformations gener-
ated by the infinitesimal transformation C

;
the parameter r is

additive on composition. The power series is obtained by the

method of successive approximations ;
this method can also

be applied to obtain a solution in the more general case in which
the infinitesimal unitary transformation C is not the same for

each time element dr
}

i.e. in which C is a matrix C(r) depending
on the time r. The solution of the equation

for this case is given by

j(T2)
=

the unitary transformation U(r^r^ which takes place in the

time interval rl9 r2 obeys the law of composition

UM = U(r3rz}U(rzr,}.

If =
j at time T = 0, the formulae for the successive approx-

imations Jj (r) are

joM = jo ; ji+iM - EO +
oo

for U(r) = f/(rO) we obtain the infinite series Ui (r) in which
/--= o

rf/. (6.9)

Written explicitly,

=
f f

(0 <, i ^ , ^ ' ' ^
<j
^ T)

The proof of the convergence of this process is readily ob-

tained with the aid of the quantity |
A

\
associated with a matrix

^4 =
||
alk || by the equation

i, k

It follows from the well-known Schwarz inequality

Ul&l + <*2&2 + * ' * + #nU 2

^(|a 1 |

2 + --- + |aj)(|fc 1|+ + |frj) (6.10)

that

M + 51 ^ MI+ |5|
and that

\A\ \B\.
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The second inequality is obtained by applying (6.10) to the

element

and summing with respect to i and k. The first inequality may
be stated in the form

\\A(t)dt

for integrals. The convergence of SUi (r) can now be established

with the aid of these auxiliary results, for we can prove that

under the assumption

\C(t)\ ^C (0<^T)
that

For this is certainly true for / = 0, and the recursion formula

(6.9) enables us to conclude that it holds for f/m if it holds for

/j. The convergence follows from this absolute convergence,
for the absolute value of each component of the matrix A is

certainly not greater than
|

A \.

We have only gone into these matters to reassure the reader

of the legitimacy of dealing with infinitesimal quantities of the

kind met here. The only thing of importance for the following
is the simple relation existing between infinitesimal unitary
transformations and Hermitian forms.

7. Remarks on oo-dimensional Space

The unitary spaces which appear in quantum mechanics

usually have an infinite number of dimensions. Such a space
consists of all vectors

whose components x { constitute an infinite sequence of numbers
for which

converges. Within this domain addition and multiplication
with numbers, as well as the construction of the scalar product
of two vectors, are possible. All the axioms employed so far
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are satisfied, with the exception of the dimensionality axiom y
introduced in 1.

Since the vector components xl9 x%, constitute a de-

numerable set, this
"
Hilbert space

"
has a denumerably infinite

number of dimensions. But in addition to these, spaces of

non-denumerably infinite dimensions may occur. Consider, for

example, all continuous complex functions ifj(s)
of a real variable

s of period 27r. We need not distinguish between two values of s

which are congruent mod 2?r, i.e. whose difference is an integral

multiple of %TT
;

it is consequently more convenient to consider ifj(s)

as a function defined on the periphery of the unit circle than on the

straight line. The various values of s at points on the circum-

ference play the r61e of indices, the value <//($) at the point s being
the component of the

"
vector

"
with index s. The totality

of such functions
*f*(s) therefore constitute a linear

"
function

space
M

of continuously infinite dimensions. Addition of these

vectors and multiplication by a number have here the same

interpretation as in the ordinary operations with functions.

The square of the absolute value of the vector $ is taken to be

(0, I) - l$(s}t(s)ds

and the scalar product of two vectors
<f>
and

</r
as

A set of functions

&(*) #i(*),
'

, 4>(*)

constitutes a unitary-orthogonal system of vectors if

These vectors span an n-dimensional sub-space 9tn of the oo-di-

mensional function space, i.e. that sub-space consisting of all

vectors of the form

x i> x*
' '

>
xn are the components in the co-ordinate system

^i> ^2,
' '

% <f>n
of the vector <f>(s)

in 9ln . We have

2*

<f>(
S
)
ds = X lX l
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An arbitrary vector
\ft

can be broken up into a component <f>

which lies in 9Rn and a component <// perpendicular to 3tn :

M = 27 *<*<(*),
<- 1

It follows from these equations that [cf. (4.3)]

2*

These integrals are called the Fourier coefficients of the function

</r
with respect to the orthogonal system $ t

. The orthogonal

projection <f>
on 5Rn cannot be longer (i.e. have greater absolute

magnitude) than itself
;

this is the content of the so-called

Bessel inequality
2*

*jj(s)ds. (7.1)

In fact, since (<, </r')
=

0, (f, ^)
=

0, the
4<

Pythagorean theorem'
1

('A, A)
- W, *) + (f , 0')

holds.

The simplest unitary-orthogonal system in the domain of

periodic functions, with which the theory of Fourier series is

concerned, consists of the functions

1

e(ns) [n - 0, l
f 2, ; e(x)

-
e**]. (7.2)

ITT

This infinite system has the property of completeness] it

is a complete co-ordinate system for the entire function space.
The theorem that any periodic function *fi(s)

can be expressed
as a linear combination of the functions (7.2) :

4- oo

(Fourier expansion of ifi(s)) is true only if certain conditions

concerning the differentiability of ^(s) are fulfilled, but any
continuous function satisfies ParsevaVs equation

2
;

f ^(
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We learn from this example that there is no essential distinction

between spaces of a denumerable and of a non-denumerable infinitude

of dimensions ; we have introduced into our function space
a complete normal co-ordinate system (7.2) consisting of a

denumerably infinite set of fundamental vectors. In an n-

dimensional unitary space a system of unitary-orthogonal
vectors is complete if their number is n, but not if it is less

;

however, such an enumeration gives no criterion for oo -dimen-

sional space. If we leave out a finite number of the functions

(7.2) we still have an infinite set left, but the completeness of the

system is destroyed thereby. The real criterion for complete-
ness lies in the validity of the completeness relation (7.3).

We can understand the relations existing in Hilbert space

by analogy with or as limiting cases of those existing in spaces
of a finite number of dimensions. If we consider the values of

an arbitrary periodic function $(s) only at the points

27T . 27T
, 1X

27T

(n 1
)',n n

and set

we are dealing with an n-dimcnsional vector space in which the

components of the arbitrary vector
iff

are these quantities

gv (v = 0, 1, ,
n 1). Let eA be the vector in this space

with components

these vectors eA (A
=

0, 1, ,
n 1) constitute a normal co-

ordinate system for the space, relative to which the vector

has the components #
,
xlj ,

xn^ which are to be calculated

from
n- 1

In accordance with (4.3)

1 ^ /27
*A = -7- > e

Vn^-f \ n

- 1

27rAv

whence
n-l n-l

*-0 J-O
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By passing to the limit n -> oo we obtain the equation of ParsevaL

We do not concern ourselves here with the further considerations

which may be necessary to establish a rigorous proof, but content

ourselves with such reasoning by analogy.
We consider the linear correspondence or

"
operator

"

D = -r -.- which transforms a function Ji(s) in the domain of
i ds

rv '

periodic functions into --TT e(ns] is the characteristic vector

(characteristic function) of this operator belonging to the

characteristic number n :

1 de(ns] .

N
-r i

- = n e(ns).
i ds

x '

This operator is Hermitian
;

the scalar product of
<f>

and Difi

is the conjugate complex of that of Jj and Z)<, where < and
</>

are any two periodic functions, for by partial integration
'in In

f it N
! ^v f /

! <^
05 -

-/-rf5
= I -

-^rfs
J

rv x

z a^ J
r

z rf5

o o

and the right-hand side is conjugate to

r
i ds

In fact, the Hermitian form

2.TT

If rrff
-r

(/r

~^-

Z J rf^

assumes the normal form
-f oo

H nx nx n (7 }+-* wn~n V /

in the normal co-ordinate system whose fundamental vectors

are the characteristic vectors of the operator D. The reiterated

operator DD = -7-^ appears in the theory of the vibrating

string, together with the corresponding Hermitian form

2* 2*

o o

which represents the kinetic energy of the string.
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We have here been dealing with a discrete spectrum of char-

acteristic numbers. But in an oo-dimensional space Hermitian

forms with a continuous spectrum can also be constructed.

Consider, for example, the function space consisting of all con-

tinuous functions
\jt(s}

defined in the interval TT ^ s ^ + TT
;

the square of the absolute magnitude of the
4<
vector

M
if/

is then

The Hermitian form

+ 71

A\$\ = \s$(s}$(s)
ds (7.5)

n

is already in normal form, which shows that it has as character-

istic numbers all numbers between TT and + TT. The functions

(7.2) again constitute a complete normal co-ordinate system in

terms of which
4- oo

n = oo

Substituting this in (7.5) we find

. 1

The evaluation of

4- n

(s e[(n m}s}ds
n

yields when n = m and by partial integration

r
. *[(n-m)s]-}

+ *_ (- 1)
S *

7j
-

: ATT-Tj
L i(n m) _]_ i(n

;

m)

when n =^ m. The Hermitian form

n m

has therefore as characteristic numbers all values between
77 and + 77.

The characteristic vector $a belonging to the characteristic

value a
(

77 ^ a ^ + 77) of A[^i\ is that function which vanishes

at all points s 4= a and is there so large that the integral of

Pure Mathematical Physics



REMARKS ON oo-DIMENSIONAL SPACE 37

$*ifia has the value 1. Of course such a function does not really

exist, but we can approximate it as closely as we wish. In

order to arrive at a formulation which is mathematically rigorous
for the case of continuous spectra, we must introduce in place
of the idempotent Hermitian form Ea in (5.4) the idempotent
form AE = Ex for the entire interval A = Af (a ^ A < j3).

a^A</3
For any given vector

A(j) S 0, AL< (j) + A(s) = AE(j) (7.6)

and the idempotent forms Afi associated with two separated
intervals A are mutually independent.

In dealing with the continuum, the sum in (5.4) is replaced

by a Stieltjes integral. Consider the straight line described by
the real variable A as being covered with a substance, and let

the amount of this substance on the interval A be denoted by
Am. We then have, in analogy to (7.6),

Am ^ 0, Afw + Am = Aw.

If 0(A) is a continuous function of position we can construct

the integral
i

f^(A)^m. (7.7)

An approximation to this integral can be found by dividing the

entire interval < A ^ 1 into small intervals A
t , choosing a

point A< in A, and evaluating the sum 2//>(^i)
'

A,w. This sum
t

then converges to the integral on allowing the A, to approach
zero. If the distribution has a continuous density

.. Am
hm

the integral is identical with f</>(A)p(A)dA. But the Stieltjes
o

integral (7.7) also includes the cases in which there exists no

finite continuous density ;
in particular, it allows the existence

of discrete points at which a finite amount of the substance is

concentrated. If the substance is distributed over a finite

number of points A -- a
t

in amounts m,, the Stieltjes integral
reduces to the sum 2//>(a t)m t

.

i

We thus arrive at the following more inclusive formulation

of the fundamental theorem concerning the transformation to

principal axes : (1) The Hermitian form A associates with each
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interval A an idempotent form A(j) ; (2) when two adjacent
intervals A 1? A2 are added together toform an interval A,

AS = A x + A 2E,

and the idempotent forms associated with separated intervals are

independent ; (3) we have

In this form the theorem is adapted to the appearance of con-

tinuous spectra of characteristic numbers, and is particularly

appropriate for the purposes of quantum mechanics (cf. II, 7).

The discrete characteristic numbers lie at those points where
the monotonic increasing function Ai^Efe) = E(X ; j) of A has

a discontinuity. In our example (7.5)

here
iff

must be taken as outside the interval
(- TT, + TT).

The evaluation in terms of the co-ordinates x n is readily accom-

plished.
Consider the function space consisting of the totality of

all functions t/(s) of a variable s, which assumes all values from

oo to + o> &nd which have a finite absolute magnitude

i.e. which are
"
integrable square." The characteristic functions

associated with the linear correspondence ifi(s)
-> - -~ are again

7 t*sj

the functions ^(^), but the frequency v can now assume all real

values. The components of
ifj(s)

are the quantities

-f 00

Fourier's integral theorem then allows us to conclude the validity
of the expansion

-f 00
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under certain assumptions concerning the differentiability of

the function
ifi(s) ;

but in any case the completeness relation l

-f oo

is valid. We arrive at a somewhat different problem when we

only require that the functions
ifj(s)

be such that $(s)i{t(s)

possess a definite mean value

-f a

lim -[f(sMs)ds
= (0,0);

-> oo *-wj

this leads to the theory of almost-periodic functions developed by
H. Bohr. 2 Here again the validity of the completeness relation

can be established.

The theory of the characteristic numbers of Hermitian forms

in infinitely many variables has been developed by Hilbert and

Hellinger* but it is applicable only to bounded forms

i.e. forms whose values have a fixed upper bound when

J*
= 2;*,*, ^1. (7.8)

i

Indeed, without this assumption we cannot guarantee the

convergence of A() in the entire domain (7.8) ;
as an example

consider the form (7.4), Znxnx n . That this form only converges
n

in a portion of the domain (7.8) is merely another expression of

the fact that not every continuous function is differentiable.

The situation is more favourable for unitary forms as they

satisfy the condition that they be
4t bounded "

in consequence
of their very definition

;
a unitary transformation is thereby

to be taken as satisfying both of the conditions

UU = l, [717=1.

The theorem on principal axes has been proved rigorously for

bounded Hermitian and for unitary correspondences in oo-

dimensional space. A method due to A. Wintner 4 seems

particularly appropriate for dealing with unitary correspond-
ences

;
it is based on the consideration of the discrete group of
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all powers Un of the given unitary transformation U, and deter-

mines the monotonic increasing function E(X ; j) of the real

variable A (0 ^ A ^ 2rr) by means of the equations

2*

i) (7.9)

(the problem of trigonometric moments). J. v. Neumann 6 has

gone furthest in dealing with linear operators for which bounded-

ness is not postulated. In accordance with 6 with a Hermitian

form A is associated a group of unitary correspondences eirA= U(r)

depending on the real parameter r and satisfying the equation

tf(r + T')= U(r}U(r'); (7.10)

the study of this group is equivalent to the study of A. It is

therefore perhaps appropriate to replace this latter for oo-

dimensional space by the former, for no convergence difficulties

appear in the domain of unitary transformations. We must
therefore attempt to bring the operators C/(r), which are con-

tinuous functions of the real parameter r satisfying (7.10)

simultaneously into the form

2*

U(r; E)
= ^rfA (A;j). (7.11)

This is accomplished with the aid of Wintner's method on re-

placing the discrete parameter n in (7.9) by the continuous

parameter r. The problem (7.11) bears the same relation to

(7.9) as Fourier's integral bears to Fourier series.

In setting up a system of axioms for oo-dimensional vector

space the axioms (a), (/?)
of 1 and the metric axiom (8) of 4

can be retained
;

for the proper substitute for the dimension

axiom (y) see, e.g., v. Neumann,
4< Mathematische Begriindung

der Quantenmechanik."
6

The algebraic and geometric tools developed in this chapter
offer a natural medium for the expression of quantum mechanics

;

they already hold a dominating position in the classical physics
of continuous media. A masterly exposition of their mathe-
matical content and application is found in the first part of

Courant-Hilbert's
" Methoden der mathematischen Physik,"

2nd ed. (Berlin, 1930).
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CHAPTER II

QUANTUM THEORY

1. Physical Foundations l

THE
magic formula

E = hv (1.1)

from which the whole of quantum theory is developed, establishes

a universal relationship between the frequency v of an oscillatory

process and the energy E associated with such a process. The

quantum of actio'n h is one of the universal constants of nature

h = 6-547 X 10~ 27
erg sees.

It was first discovered by Planck at the turn of the century in

the laws of black body radiation ; that is, radiation which is

enclosed in a cavity and is in thermodynamic equilibrium with

matter of a definite temperature, which by emission and ab-

sorption causes an exchange of energy between the various

frequencies contained in the radiation. Since this equilibrium
is independent of the particular nature of the matter involved,
Planck considered, as a kind of schematic matter, a system of

linear oscillators of all possible frequencies. A charge oscillating
with frequency v interacts with the electromagnetic field by emitt-

ing and absorbing radiation of the same frequency. Planck as-

sumed that the exchange of energy took place in integral multiples
of an energy quantum e ; he at first considered this assumption
merely as a mathematical device, and intended to pass to the

limit e-^-0. In order to obtain agreement with the Wien

displacement law, which was derived from general thermo-

dynamieal principles, the energy quantum associated with a

definite frequency v must be taken proportional to v\ e = hv.

In this way Planck obtained his radiation formula, which is in

excellent accord with observation
; according to it the amount

of energy contained per unit volume in the spectral interval

v
}
v -f- dv in thermodynamic equilibrium at temperature is

, .

(1.2)ce -
1)

41
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where c is the velocity of light and k the Boltzmann constant

(%kO being the mean energy of an atom of a monatomic gas at

temperature 6). On passing to the limit h = we obtain the

Rayleigh-Jeans radiation law

i \ i a
(")
=

73-
' ke -

The assumption of the validity of this latter law for the entire

spectrum is in gross disagreement with the facts, as it would

lead to an infinite value for the total energy \u(v)dv ;
a state of

equilibrium would therefore be impossible with given finite

energy,
The idea of a quantized exchange of energy, which occurs

in Planck's derivation somewhat schematically and only in

application to statistical thermodynamical consequences, was
first seriously applied to individual atomic processes by Einstein.

In 1905, guided by the observations of H. Hertz, Hallwachs

and Lenard on the photo-electric effect, he enunciated the idea

of a light quantum or photon as
"
an heuristic viewpoint con-

cerning the generation and transformation of light
M 2

according
to which not only the exchange of energy between matter and

radiation of frequency v occurs in quanta of amount hv, but

further, light of frequency v can exist in the ether only in quanta
of energy hv. The decisive experiments were first performed

by Millikan ten years later. By allowing ultra-violet or X-
radiation of frequency v to fall on a metal plate electrons are

released whose kinetic energy (as was already known to Lenard}
increases with the hardness (i.e. with decrease of wave-length)
of the incident radiation ; the energy with which the electrons

are emitted is, however, not influenced by the intensity of the

radiation. The exact relation predicted by Einstein is

, n mv*
j/hv P -5- = eV

2t

where e, m and v are the charge, mass and velocity of the

electron, respectively. The energy hv of the photon is trans-

formed into kinetic energy of the electron, after subtracting
from it the work P required to pull the electron out of the metal

surface. If the potential difference between the metal surface

and a plate placed in front of it is V the electron current will

disappear as soon as V exceeds the critical value F = .

Millikan found that the potential at which the current vanished,
obtained by extrapolation, was in fact exactly proportional to
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the frequency v for monochromatic light of various frequencies,
and that the constant of proportionality was equal to the

quotient of the h obtained by Planck from black body radiation

and the elementary quantum of electric charge e. The differ-

ence of the mean energy P for two different metals is furthermore

equal to e times their contact difference of potential. The
value of P, or at least its order of magnitude, is therefore known,
and we find that for X-rays of a few Angstroms wave-length

(lA = 10~ 8
cm.) P is negligible in comparison with hv. The

equation

to = f*
= eV (1.3)

governs not only the generation of secondary cathode rays by
primary X-rays, but also the inverse process : the transformation

at the glass wall or on the anode of the incident cathode rays
into the impulse radiation first observed by Rontgen. If an

electron which has run through the potential drop V in the

X-ray tube loses its entire energy on collision, a photon of fre-

quency v and energy hv = eV will spring into existence. The
electron may, however, only be slowed down

; consequently
v is only the upper limit for the frequency of the impulse radia-

tion, which will therefore consist of a continuous spectrum with

eV
a sharp limit at v = -7-. The old classical theorv of radiationr h

was entirely unable to account for this most characteristic

property of the impulse radiation. The frequency of the limit

increases in proportion with the applied potential and this is

the exact formulation of the fact that
"
the higher the potential,

the harder the rays
"

so familiar to every X-ray operator.
The observed phenomena thus confirm the hypothesis that

radiation of frequency v can be absorbed and emitted only in

quanta of energy hv. This hypothesis will of course have further

consequences for the theory of the structure of matter. The
Planck oscillator will, for example, be unable to alter its energy

continuously since it can only emit or absorb these fixed quanta
of energy, and it will consequently spring to and fro on the rungs
of its energy ladder, which are equally spaced at intervals hv

;

v is here the frequency of the oscillator, a constant determined by
the constitution of the oscillator. An application of the essential

elements of this idea to actual atoms gave rise to the frequency
rule enunciated by Niels Bohr (1913) :

An atom can exist only in certain discrete stationary states

(" quantum states
f>

)
in which it does not radiate. Light will be

emitted on transition from one state into another ; the energy which
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it loses in this transition, the difference El E2 of its energy in

the two states, will be transformed into a photon of energy hv, the

frequency v of which is determined by the equation

h = El
- E2 . (1.4)

In this equation Elt E2 may be any two of the discrete energy levels

(El >E2). Conversely, in absorption a photon raises the atom from
the energy level El to a higher E2 by giving up its energy hv to the

atom.

According to classical electrodynamics an atom should

continually emit radiation in consequence of the vibrations of

its constituent electrons, and the frequencies of the emitted

light should agree with the frequencies of the simple oscillations

into which the motion of its electronic system can be resolved.

But the atom will itself lose energy through this radiation, the

motion of its electrons will thereby be modified and the fre-

quencies will consequently be displaced. This entire point of

view is therefore irreconcilable with one of the most fundamental

physical facts : the existence of sharp spectral lines. On the

other hand, Bohr's assumption is not only in agreement with

this fact, although it offers no such detailed picture of the

reaction between matter and ether as the classical theory, but

contains in addition the fundamental Ritz-Rydberg combination

principle. If we order the energy levels in an increasing series

EQ < E l < E2 < ,
then in accordance with (1.4) each

frequency v is the difference of two "
terms

"
v

l EJh,

v(i -> k)
= v

t
vk (i > k).

Consequently there will occur in addition to the frequencies v(i -> k),

v(k ->
/)

the frequency

v(i -> /)
= v(i _> k) + v(k ->

/) (1.5)

obtained from them by addition. This combination principle is

valid without exception in the whole of spectroscopy, in the

optical region as well as in that of X-rays, and has proved to

be a valuable guide in the classification of spectra ;
it reduces

the complex line spectra to the simpler term spectra. Un-

fortunately the problem is made more difficult by the fact that

not all lines corresponding to possible transitions i ~> k need

actually occur not every term v+ need
" combine "

with a

given term vk for the conditions of excitation may be such
that certain lines have zero intensity. The selection rules for

the allowable transitions will therefore be contained in the

rules which determine the intensities of spectral lines. The
combination principle, or the Bohr frequency rule, determines,

Pure Mathematical Physics



PHYSICAL FOUNDATIONS 45

so to speak, only the keyboard of the spectrum which tones

are really struck is dependent on the mode of excitation. But
it will in general be possible under proper conditions of ex-

citation, e.g. the influence of strong external electric fields, to

bring out the lines which are not observed under ordinary
conditions.

In the
"
unexcited

n
or normal state the atom is in the stationary

state of lowest energy "<,,
and consequently only the lines of the

41
series

" n -> 0, of frequency vn VQ (n
=

1, 2, ), occur in

absorption. The lowest of these 1 ->
(i.e. with greatest wave-

length), or more precisely the lowest which is not forbidden by
the selection rules, is called the

"
resonance line."

The simplest atom is that of hydrogen ;
in it a single electron

of charge e revolves about a nucleus of opposite charge + e.

The terms of the spectrum of atomic hydrogen are found by
observation to tfe given by the equation

-' = - *
(1.6)

c n2

where R = 109700 cm." 1
is the Rydberg constant (spectroscopists

are accustomed to give the wave number v/c, the reciprocal wave-

length, instead of the frequency i>).
The energy levels corre-

sponding to these frequency terms are En y-.
To this

discrete term spectrum we must add the continuous spectrum
E ^ ;

the additive constant in the energy is so chosen that

E = separates the hyperbolic electron orbits from the elliptic.

The Balmer series consists of the lines n -> 2 with wave numbers

1
-

^t)
(n
-

3, 4, ).

This is the oldest known series formula
;
Balmer obtained it in

1885 by abstraction from the first four lines of the series, called

Ha
,
H

ft , //y, //, which lie in the visible region. The lines of

this series converge with increasing n to a limit with wave

number ( wave-leneth ~ = 3650AV -7 is the work required
4 \

* R / 4 n

to ionize an f/-atom in the stationary state n = 2, i.e. the work

required to remove the electron from such an atom without

leaving it with kinetic energy. The continuous spectrum,

arising from transitions which ionize the atom, will join on to

this series limit on the short wave side. We are further ac-

quainted with the Lyman series n ~> 1 which lies in the ultra-

violet and also occurs in absorption, the Paschen series n -> 3
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lying in the infra-red, and finally with some members of the

Brackett (n -> 4) and Pfund (n -> 5) series in the far infra-red.

In order to ionize hydrogen in the normal state an amount cRh
of work must be done

;
the corresponding

"
ionization potential,'*

i.e. the potential difference an electron must traverse before it

is able to ionize atomic hydrogen by means of its kinetic energy, is

/*/?/!

V - = 13-53 volts.
e

Bohr's frequency rule goes beyond the combination principle
in asserting that the terms are actually energy levels, an assertion

irrelevant to and not verifiable by spectroscopy. That this is,

however, in fact the case is confirmed by the experiments of

Franck and Hertz on collision phenomena* In these experiments
electrons are given an amount eV of kinetic energy by allowing
them to pass through an electric field of known potential differ-

ence V and are then allowed to pass through a gas consisting
of the atoms which are to be investigated with the velocity thus

obtained, without further influence from external fields. The
electron can give up no energy to the atom until eV is greater
than the excitation energy E l EQ of the resonance line

;
if

El EQ < eV < E 2 EQ

then the electron can either suffer an
*'

elastic collision," in

which case it loses no energy, or it can suffer an "
inelastic

collision," in which case it loses an amount E
l EQ to the

atom. The electrons which have passed through the gas are

of two kinds, those with kinetic energy eV and those with

eV (El E
).

When the atoms which have been raised

from the state to the state 1 by collision with electrons fall

back into the normal state they emit the resonance line and,
under the above conditions, only this line. This is fully con-

firmed by the experiment. The kinetic energy of the emerging
electrons is measured by introducing a retarding potential V ;

the electrons only come through it if their energy is greater
than eV . In general the electrons possess a discrete

"
energy

spectrum
"

after collision with an atom of the gas ;
the possible

energy values are

eV^ ^eV -
(En

-
)

(n
=

0, 1, 2, ,
in so far as Vn

'

is still positive ;
we here dis-

regard the possibility that a single electron may suffer more than
one inelastic collision). On allowing the retarding potential V
to decrease gradually from a value which is greater than V the
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electron current decreases suddenly whenever V passes through
one of the values FQ, V\> .

Bohr's frequency rule reduces the determination of spectra
to the problem of obtaining the stationary states and the correspond-

ing energy levels of an atom, i.e. of a mechanical system of known

dynamical constitution. The example of the linear oscillator

given above and the fundamental notions of the theory of

oscillations suggest the following as a general guiding principle

(P) : the frequencies derived from the energy levels by means
of Bohr's frequency rule shall correspond to the frequencies of

the simple vibrations into which the actual motion of the atomic

constituents can be resolved in accordance with the laws of

dynamics. Such a resolution into simple oscillations is con-

vincingly attainable in classical mechanics only if the system
is

4t

multiply
"

or
l4

conditionally periodic," and for this case it

was actually found possible to sharpen the general principle (P)
into a definite rule for quantization. In the years 1913-25 the

application of this quantum rule yielded a great harvest of

results, and it seemed that we were in possession of the key that

would unlock the mysteries of atomic processes. But the wards
did not quite fit

;
toward the end of this epoch its failure became

more and more apparent and the physical theory was gradually
reduced to a symbolic calculus of quantum numbers which had
to be corrected each time a new fact was discovered. We do

not wonder now that it ran such a course, but rather are surprised
that it was as successful as it was !

From the beginning the quantum rules were a compromise.
If a mechanical system of one degree of freedom undergoes a

periodic motion the frequencies v of the simple vibrations into

which its motion can be resolved are integral multiples of a

fundamental frequency a>. This frequency depends on the

energy of the orbit under consideration, and this latter is re-

stricted by the quantum rules to the discrete set E n . The
internal frequencies of the motion are therefore given by the

formula

v = k co(n) (1.7)

which depends on the two integers n and k. By the analogy
with quantum mechanical frequencies this internal frequency

(1.7) is to be ascribed to the jump n -> (n k). The fact that

v depends linearly and homogeneously on the jump k is expressed

by the
"

classical combination principle
"

v(n -+n k)+ v(n -> n -
/)
= v(n -> n k

/) (1.8)
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in consequence of which frequencies with the same initial state

n will combine. But this is not in accord with the correct

combination principle

v(n -> n k) + v(n k -> n k
1)
= v(n -> n k

/) (1.9)

The changes k
y

I in the quantum number are here the same as

in (1.8), but the final state n k of the first frequency coincides

with the initial state of the second
; only for quantum numbers

n which are large compared with k and / does the classical

principle agree asymptotically with the Ritz-Rydberg com-
bination principle. Consequently if the general principle (P)
is to be satisfied without compromise our mechanics must be

altered in such a way that the false combination principle (1.8)

is replaced by the correct one (1.9). In 1925 Heisenberg dis-

covered a way in which such an alteration can be naturally

accomplished ;
in order to do this, however, it was necessary

to give up the picture of an atom with its electronic orbits.

The quantities with which the Heisenberg theory deals are

only the frequencies and intensities of radiation associated with
transitions between the various states of the atom.

It should be observed that the correct combination principle

(1.9) is in one important respect simpler than the false one (1.8).

As the formulation

v(n" -> n r

) + v(n' -> n)
= v(w"-> n) (1.10)

shows, the quantum numbers serve only as distinguishing marks
or indices which do not involve a law of composition, whereas
the classical formula requires the addition of quantum numbers,
which are therefore numbers on a definite scale.

Another approach to quantum mechanics was discovered

by L. de Broglie and E. Schrodinger.* This approach seems to

me less cogent, but it leads more quickly to the fundamental

principles of quantum mechanics and to the most important

consequences for experimental science. We shall therefore

follow it, since we are more concerned in giving a short but

comprehensive account than in giving a complete discussion of

the physical foundations. The physical, essentially statistical,

interpretation of the theory, with which Schrodinger has not

been entirely in accord, is due mainly to M. Born.

2. The de Broglie Waves of a Particle

We consider the undulatory character of light as guaranteed

by the phenomena of diffraction and interference. Their most
decisive feature is that with them we are dealing with the linear
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position of waves with arbitrary differences of phase. From
lathematical standpoint, they are characterized by the fact

they involve addition and multiplication with complex
>ers, and we are consequently dealing with vectors in a

lex space. We can, in fact, consider a complex function

:yz) employed in the description of the phenomena and
id over time and space as such a vector, where each space-

point represents one dimension of a complex vector space ;

ifferential laws for such a wave function ^ or for several

functions simultaneously, such as the components of the

ic and magnetic field strengths are linear and homo-
>us. But on the other hand the quantum phenomena
i we discussed above speak just as plainly in favour of

'orpuscular nature of light. The intensity of the mono-
natic radiation employed in the production of the photo-
ic effect has no influence on the velocity with which the

ons leave the metal
;

it influences only the frequency of

ivent. Even with intensities so weak that on the classical

y hours would be required before the electromagnetic

;y passing through a given atom would attain to an amount
> to that of a photon, the effect begins immediately, the

s at which it occurs being distributed irregularly over the
* metal plate. This constitutes a proof of the existence of

>ns which is no less direct than the proof that a-particles are

rpuscular nature by observing the scintillations caused by
on striking a sensitized screen. Further, if one considers

exchange of momentum in addition to that of energy in

ing the laws of black body radiation, conflict with Planck's

thesis concerning energy quanta can be avoided only by
ning that in addition to the emission of the energy quantum
quantum hv\c of momentum is emitted in a definite direction,

jcing an equivalent reaction on the atom. 5 We here replace
ontinuous radiation of a spherical wave by the discontinuous

>ion of photons in definite directions which are irregularly
ibuted over the compass.
/e unite the two standpoints by retaining the linear wave

'ion, but considering the intensity $</r as the relative probability
the photon appears at the point (x, y, z) at time t ; or, more

sely, that

$<f*dxdydz (2.1)

e probability that at time t it will be found within the small

llelepiped with sides of length dx, dy, dz about the point
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(x 9 y, 2).* But we can only expect to arrive at a rational theory

if we deal with material particles in the same way as with photons.
This point of view was developed in the Bose-Einslein treatment

of an atomic gas, which paralleled that employed in the theory
of black body radiation (" light quant gas ").

6
Schrodinger's

researches took as their point of departure the Hamiltonian

theory of mechanics, which was originally obtained by Hamilton
himself from an analogy with geometrical optics. He argued
that since we replace geometrical optics, with the aid of which
interference and diffraction cannot be treated, by wave optics,
it is reasonable to attempt the analogous transition in mechanics.

The results amply justified the attempt. The investigations of

Davisson and Germer
1
which prove the existence of interference

in beams of electrons reflected from a crystal lattice, were already
in progress when de Broglie published his theory. The experi-
mental evidence that moving material particles behave in much
the same way as a beam of light with respect to these phenomena
is now fully established, and with no less certainty than for

X-rays, by a series of further investigations by the same
authors and by G. P. Thomson, F. Rupp and others. 7 The
real difference between "

light-like
"
and 4t

electron-like
" beams

lies in the fact that the particles composing the latter possess

charge and proper mass and can consequently be deflected by
electric and magnetic fields.

A simple oscillation is one in which the function
//, defining

the state of the system, depends on the time in accordance with

the law
= a e~ ivt

(2.2)

where a and v are independent of t. [We choose as our unit

of angular measure that one which proves most useful in differ-

ential calculus, for it yields the simple relation

for the fundamental trigonometric function eix e(x). The
sum of the angles about a point is then 2?r

;
it would, admittedly,

be more correct from the integral standpoint to take this as 1,

but then the factor 2n would appear in the differential relation.

V/ZTT is the number of oscillations in unit time
;
we shall not

*
Just as in the classical wave theory we have an expression for the flow

ot energy in addition to its density, so in the more refined formulation of

quantum theory we will have an expression for the probability that the

photon passes through a given element of surface ("probability current") in
addition to one for the probability that it be found in a given element of
volume ("probability density").
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hesitate, however, to use the name "
frequency

"
for v. If we

denote Planck's constant of action by 2irh instead of h, and we shall

throughout the present work, the fundamental formula (1.1)

will still be valid in the new nomenclature.] In accordance with

(2.3) the simple oscillations (2.2) are the characteristic functions

of the linear Hermitian operator which carries $ over into

~ j> the corresponding characteristic numbers are the
Z ClL

energies E ~- hv. If the dependence of a state of the system on

time is described by a superposition of simple oscillations

<f,(t)=:a 1 e-^
t + a 2 e-

i^ + -

-, (2.4)

the energy is capable of assuming only one of the values hvlt

hvz , ,
and we shall take the intensity dra r

=
|

ar |

2 of the

oscillation of frequency vr in
ifj

as the relative probability that

the energy is observed to be hvr . The relation E = hv is accord-

ingly to be interpreted : if v is indeterminate because an entire

spectrum of frequencies v is contained in the oscillatory process, then

the energy is indeterminate to the same ex-tent ; the intensities

with which the various simple oscillations occur in the process
measure the probabilities of the corresponding energies. The

h d
operator

-
. -.- represents the energy :

T at

in the following sense : a characteristic function of (2.5) represents
a state in which the energy assumes a definite value E with certainty.

This value is the corresponding characteristic number ; in an

arbitrary state the components a of ^ wilh respect to these character-

istic functions determine the relative probabilities a a of these

values E.

According to the theory of relativity energy is to be con-

sidered as the time component of a 4-vector whose spatial com-

ponents constitute the linear momentum
|)
=

(p X} p vy p z }.
The

fundamental metric invariant of the two vectors running from

the origin to the points (t, xyz), (t', x'y'z') is the scalar product

c*tt' - (%%' + yy' + zz}.

Under a Lorentz transformation, which transforms from one

space-time co-ordinate system to another equally permissible

one, the quantities

c*t, x, y, z

must consequently transform contragrediently to
t, xyz\ they

are therefore the components of the vector associated with
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(t t xy z) in the space which is the dual of the 4-dimensional space-
time world. Such a dual vector is given by

H, />*, py, Pz ;

or, what amounts to the same thing,

Hdt (pidx + pydy + pjz)

is invariant under Lorentz transformations. The same is true

of the total differential operator

applied to an arbitrary function of /
; x, y, z. Hence the corre-

spondence (2.5) necessarily implies the further relations

h * h *
v>

h s
/o A\

^i-^' '"-^s/ *-*;* (2 - 6)

which are to be given the analogous interpretation.
A homogeneous plane wave

= a ^(-'< + + ^y + ^r*)

(2.7)

is simultaneously a characteristic function of the four mutually
commutative operators (2.5), (2.6), which has as characteristic

numbers
H = hv; px = &a, p v

-
Aj8, #>,

-
hy. (2.8)

It represents a state in which the energy and linear momentum
of the quantum possess these sharply defined values.

In classical mechanics the laws governing the motion of a

particle are known as soon as we express its energy H in terms

of the
"
canonical variables

"
xyz, pxpvPi- In Newtonian

mechanics the Hamiltonian function for a free material particle
of mass m is

H = *' +
|*

+ />
'

J (2.9)

on employing the transition scheme developed above we obtain

the corresponding wave equation

(2.7) is a solution of this equation provided the values (2.8) of

energy and linear momentum satisfy equation (2.9) ;
in this

sense (2.9) and (2.10) are equivalent. But the equation (2.10)
is linear and has as its most general solution a linear super-

position of simple waves (2.7) ;
such a superposition corresponds
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to a state in which the energy and momentum of the particle
assume their various permissible values

4< with a certain definite

probability/'
The space vector (a, ft, y) in (2.7) gives the direction of

propagation of the plane wave, and the modulus of this vector

is the wave number ft (the number of waves contained in 2n

units of length ; 2ir/ft is the wave length A). Hence by (2.8)

the absolute value p of the momentum is equal to hp,
= --

- is the phase velocity of the wave
;

in accordance with (2.9) or

*
2v = 6

--
P-2m ^

it is h^/2m = hrr/Xm and depends on the wave length or frequency

(dispersion). Since p mv, where v is the velocity of the

particle, the "group velocity" -y-
= = v coincides with the

velocity of the particle. Experiments on diffraction and inter-

ference phenomena in electron beams, such as those performed

by Davisson and Germer, have made it possible to test directly
these relations set up by de Broglie.

In relativistic mechanics we have in place of (2.9) an equation
which states that the square of the absolute value of the energy-
momentum 4-vector is constant and equal to m 2c 2 :

^-(Pl + Pl + Pt)
= *c* (2.11)

C

or

For the transition' to a wave equation it is of advantage to employ
the rational form (2.11) of this expression :

Here again the group velocity is equal to the velocity v of the

particle, but the phase velocity is found to be c*jv ;
the former

is always less, the latter always more than the velocity of light.

In order to return from the relativistic to the
"
ordinary

"
or

Newtonian mechanics by passing to the limit c -> oo, we must

first replaceH by mc*-{-H t
i.e.

iff
must be replaced by e( --r

j ^r.

The differential equation governing light waves can be ob-

tained from (2.11) by dropping the term on the right-hand side,
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Hence from the corpuscular standpoint light consists of photons
or particles of proper mass :

H2

In accordance with the expression (2.1) for the probability

density, we are to consider as the vector in unitary system-space

describing the state of the system the function Jt in so far as it

depends on the spatial co-ordinates xyz. The integral of (2.1)

with respect to the spatial co-ordinates gives the probability
that the particles will be found

"
within the volume V at time /."

Space and time must be separated from one another
;
the system

has at each time t a definite state ift(xyz) t
which will in general

vary with /. The operators which represent physical quantities
must accordingly be ones which operate on an arbitrary function

of the spatial co-ordinates. This requirement is satisfied by
the operators (2.6) corresponding to the momentum co-ordinates,
but not by differentiation with respect to time, which we have

associated with the energy. We must instead consider the

situation as described as follows : from the expression for the

energy in terms of the canonical variables p xj p vj p z we obtain

the operator // which represents the energy and which operates
on the function $(xyz). The equation

is then the dynamical law which determines the change in the

state
tfj

in time.

The separation of space and time offers certain difficulties

to the development of quantum theory from the relativistic

standpoint ; consequently, for the present, we base our develop-
ment on the Newtonian mechanics.

Our procedure must eventually be modified in another

important respect : we have here tacitly assumed, for the sake

of mathematical simplicity but without physical justification,

that the wave field of a material particle is described by a scalar

quantity ifi.
The modification, which is required in order to

give an adequate description of the facts of spectroscopy, will

be made in Chap. IV.

3. Schrddinger's Wave Equation. The Harmonic
Oscillator

When the particle is moving under the influence of forces

the kinematic part (2.9) of the energy is augmented by the
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potential energy, which usually depends on the co-ordinates

alone and not on the momenta. We must therefore know
which Hermitian operator acting on

ifj corresponds to the co-

ordinate x. I assert that it is multiplication by x
;

this operator
is already referred to its principal axes, its characteristic values

are all real numbers x and finally *l>(x),
or more precisely ifi(x)\/dx,

is the component of the
"
vector

"
associated with the character-

istic number x (we have here ignored the other co-ordinates y, z).

In accordance with the statistical interpretation of the relation-

ship between physical quantities and operators, our assertion is :

the probability that x has a value between x and x2 is

this is in agreement with the expression (2.1) for the probability

density. If V(xyz) is a function of position in the 3-dimensional

space, e.g. the potential energy, then the physcial quantity V
is represented by the operator

-> V(xyz] $,

for the probability that V lies between V l and V\ is given by the

integral

\ \\ijjifjdxdydz

extended over that portion of space in which V ^ V(xyz) ^ F 2 .

The operators corresponding to x, y, z commute with each

other, but the operator Q corresponding to x and the operator
P corresponding to p x do not. In fact

or PQ-QP^~.l

where the 1 on the right-hand side stands for the operator

identity: *fi(x)
->

</>(#). Because of this non-commutative re-

lation between the operators P and Q, px cannot assume a definite

value with certainty when x does, and conversely. In fact, if px

is known to have the value hex. with certainty, then the dependence
of

ifj
on x is given by the factor eiax

;
in consequence of this the

position x of the particle is entirely indeterminate, since the

probability $$ of localization is the same for all points x.

If V(x, y, z) is the potential energy of the field in which the

particle moves, the total energy is

y>2 i

H -
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We assume with Schrcdinger that in spite of the fact that all

our variables do not commute we may still apply our rules for the

formulation of the wave equation ;
we thus obtain Schrodinger's

differential equation

We understand by
"
stationary

"
or

"
quantum states

"
iff

those

in which the energy E has a definite value
; they are character-

ized as solutions of the wave equation which satisfy in addition

the equation [cf. (2.5)]

h

On setting E = hv, such a
iff

will have the form e~* vt
iff
where

the new function denoted by iff
is independent of t. This function

iff(xyz), which depends only on the spatial co-ordinates, satisfies

the reduced equation

^AA + [E
-

V(Xyz}]t = 0.

The problem is thus reduced to finding values of E and functions

iff ^ of position which satisfy this equation and are such that

the integral of $ iff
over the entire space is finite. They are the

characteristic numbers and characteristic vectors of the Hermitian

operator H associated with the energy (3.1) in the function space
of all functions of position iff.

The characteristic numbers E
are the possible energy levels of the particles.

Before going any further into the interpretation of the theory
we have developed, it will be well to convince ourselves that it

leads to energy levels which are in agreement with the facts.

The simplest example is that of the linear oscillator ; with it

we are dealing with only one co-ordinate x. The potential

energy is V(x] = -x2 and the total energy

=+ "
<
3 -2

>

The equation for the determination of the characteristic values

E and the associated characteristic functions is

2m dx2\ \- (E - !*)*(*)
= 0. (3.3)
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Hermitian polynomials. The solutions of this equation are

expressed in terms of Hermitian polynomials. The nih Her-

mitian polynomial r] n (x) is defined by the equation

it is of n fch

degree and the highest term is exactly xn
. The

r) n(x) (n
=

0, 1, 2, *)
constitute an orthogonal set of functions

with the
"
density function

"
e~ x*l2 :

4-co

Jj/>
/ \ / \ _7 f\ I /O K\

c~
'

7] n (x)'nm(x)dx = u, m =f= n j (^-^)

- 00

the functions

are consequently orthogonal in the ordinary sense. To prove
this we need merely to note that

-f 00

becomes, on integrating n times by parts,

-f 00

OO

and the integrand vanishes for m < n. For m = n we obtain

-f-oo

n !

\e-
x*' 2dx

00

so the equations (3.5) can be supplemented by

y2 =:
f
*-/* i(*)rf*

= n!

oo

From (3.4) we have

and _,
^Btl -.u dn /<*N ^/^n

\ c .

we can cons,der ^^ as e.ther ^^- j
or ^(^J. Since
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and

the first of these interpretations yields the recursion formula

1?n+l(*)
=

XV)n(x) Hl?n-l(*)- (
3 - 6

)

From the second we find

or

On subtracting the recursion formula (3.7) from (3.6) we find

the simple relation

^ = ,,_,. (3.8)

Differentiating (3.7) and substituting (n + l}rj n for the derivative

of
7?n41 in accordance with (3.8), we obtain the differential equation

- * + * -

The equation for < n() is consequently

- Vn + n + 1^. - 0. (3.9)

On going over to a new unit of length by the substitution

x = <x, the left-hand side of (3.3) is equal to the left-hand side

of (3.9) multiplied by /*
2
/2wa

2
provided

/t
2 1 aa2

2ma2
4
~

2
'

1\ _n +
2/

"" ^ B

Let a> = y/afm denote the classical frequency of the oscillator.

The first of these conditions determines the new unit of length a :

h h
a2

and the second requires that

+ i). (3.10)

It is possible to show that the < n() constitute a complete ortho-

gonal system,
8 and consequently there can exist no further

characteristic numbers and functions. The oscillator possesses
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the discrete energy levels (3.10) at intervals ha> apart. That the

lowest energy level turns out to be i/tco instead of is of itself of

no significance, as we may always introduce an additive constant

into the energy, although it is meaningful to assert that the least

possible value of the quantity //, (3.2), is equal to \ha).

However, the wave equation not only yields the energy levels

as characteristic values, but it also gives us information con-

cerning the probability of localization by means of the character-

istic functions. For convenience we now take a \l~- as the
>

unit of length. When the oscillator is in the state described by
the nih

energy level, the probability that the oscillating particle is

at a distance x from its position of equilibrium is given by
~x*/> .

ifi^x). These probabilities are to be understood as

relative, and refer to equal infinitesimal intervals about the

points of comparison x. In particular, for the lowest energy
level tt~0 the probability density is e~~

x *f
2

]
we can therefore

no longer say that the mass-point is at rest in the position of

equilibrium, but rather the probability of its displacement from
this position is given by a Gauss error curve. The normalized

characteristic functions of (3.3) are given by

On expressing any function if/(x)
of position in terms of this set

~ -fco

and the operator belonging to the energy H is, as we have already

seen, expressed in terms of these co-ordinates
*f*n by

x n -> hco(n + i) x n .

In order to find the operator associated with the co-ordinate x

we must express x\l*n (x} linearly in terms of the characteristic

functions themselves
; by (3.6) we have

*<n = </Wl + W^n-l
whence

xtn
=

*J! nf l +^ ,/,_,
= V,7+~l n+1 + Vn $n _i.

in in

The correspondence tfj(x)
->

x*f/(x) is thus expressed in terms of

these Fourier coefficients by

Pure Mathematical Physics



60 QUANTUM THEORY

its matrix \\qnm \\
contains only the elements

qn. n-i = Vn, qn , w+1
= Vn + 1. (3.11)

(On returning to the original unit of length the right-hand side

must be multiplied by the factor a.) On applying the operator

-r- to
<f>n we obtain, in accordance with (3.8) and (3.6),

d^n

whence

The linear Hermitian correspondence associated with the mo-
h d . A . .

mentum p = - is accordingly

its matrix \\pnm \\
has as its only non-vanishing elements those

for which m = n 1

Pn, n-i
= -

%-Vn, pntn+1 - gi
Vn + 1. (3.12)

(On returning to the original unit of length these elements are

to be multiplied by I/a. Terms with the index n 1 are to

be omitted when n =
;

in fact, they automatically drop out

of the above formulae.)

4. Spherical Harmonics

In order to discuss the energy levels of an electron in a

spherically symmetric electrostatic field we must first discuss

spherical harmonics and their principal properties.
1. Definition. Let r denote the distance from the origin in

the 3-dimensional space with co-ordinates x, y, 0, and let r, 0, ^
be polar co-ordinates with polar axis along the positive z

direction :

x + iy = r sin Oe**, z = r cos 0.

On setting a homogeneous polynomial u of 9th degree in x
} y, z

equal to r
1 F

f , YI depends only on the directional co-ordinates

6, <f>
and is a function of position on the unit sphere. If u is

a harmonic function, i.e. if it satisfies the equation Aw = 0,

YI is said to be a surface harmonic of degree / and the harmonic
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function u itself is said to be a spherical (or solid) harmonic of

degree I. Since in polar co-ordinates

the surface harmonic Y^ satisfies the differential equation

Q. (4.2)

2. Orthogonality. On applying Green's formula to the

spherical harmonics u = r
k Y kl v = r

l

Yi on the interior of the

unit sphere, we obtain the orthogonality relations

*7,^ = 0, fe=|=/, (4.3)

in which dw = sin0dOd<f> is the surface element on the unit sphere.

Since the conjugate complex Yk of a surface harmonic is also a

surface harmonic, the first factor in (4.3) can be replaced by Y k .

3. Basis. On writing

g = x + iy, T]
= x iy

the differential equation Au = becomes

we see that a homogeneous polynomial u of degree / in
, 77,

breaks up into harmonic polynomials u^m ) :

u - 27tt<"0
f (w =-/,,/- 1,

where w(m) consists of all terms in which the exponents of and

77
have the fixed difference m. The recursion formula for the

coefficients of u(m\ which is obtained from the differential

equation Aw ~ 0, further shows that there exists one
}
and to

within a multiplicative constant only one, such harmonic u(m)
.

Accordingly, there exist exactly 2/ -f 1 linearly independent
surface harmonics of degree /

;
we may take them to be the

7<7> defined by
u(m) = r

l . y(m) a

Writing
u<
m

> -
(x
- z-m P - (x + iy)

m
P+

and r placing

(^ + iy)(x ^y) by r2 22
?
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P and P+ depend only on r2 and z. Hence on taking r = 1

we have

y(m) = ^tm*
(
S jn 0)

-m . p(m)
(
CQS ^ ^ 4)

For m = / we take P = 1, and for m = + /, P^ = 1
;

P(z)
=

(1 22
)'

for this latter case. Since Y^ depends on

<f> only in the factor eim*,

J
y(*>yO'>deo = o, m' 4= tn. (4.5)

This basis y (l

]

l)
. in which the 2-axis occupies a preferred position,

is accordingly unitary-orthogonal.
4. Completeness. That the totality of surface harmonics

constitute a complete orthogonal system on the unit sphere can

be proved by showing that any polynomial in x, y, z on the

sphere can be written as a sum of surface harmonics. Now
the general polynomial of degree / contains

(/ + 1) + / + (/
-

1) + + 1

arbitrary constants. But exactly this same number of linearly

independent homogeneous polynomials are contained in the

expression

r
l

(Yi + Y
t_ 2 + )[= Ul + (x* + y* + *>,_2+], (4.6)

for the polynomials of the form r
l

Y^ r
l

Fi_ 2 ,

- are linearly

independent in virtue of the orthogonality of surface harmonics.

r
l

Yi contains exactly 21 + 1 =
(/ + 1) + / linearly independent

functions, and consequently (4.6) contains exactly

[(/ +!) + /] + [(/ -!) + </- 2)] + ',

as asserted above.

5. Closed expressions for the surface harmonics. On sub-

stituting (4.4) in (4.2) we obtain the differential equation

d*P dP
(1
-

22)7P + 2(m
~

l]z Tz
+ [l(l + 1)

-
nt(m

-
1)] P =

for the polynomial P = P(np in z = cos 0. From this equation

we find that -7- satisfies the same differential equation on re-
dz ^

placing m by m 1
;
we thus obtain the recursion formula

p'-"w

and the expression
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In particular, the
"
zonal harmonic

"

6. Further formula.

YkYtdoj^ (4.7)

unless l k 1. For x*rkYk is a polynomial of degree
k + 1 and may, in accordance with 4, be expanded in the form
rk+l(Yk + l -f Yk _ l + ') Consequently on the unit sphere

xY,=^ YM + !Vi + -

(4.8)

and the only values of / ^> k for which the integral (4.7) can

have a value other than is / = k + 1. Hence our assertion

(4.7) ;
it also follows from the above that only the first two

terms can appear in (4.8).

Further, we shall also have occasion to use the differential

expressions

I

L 2u = Lx(Lxu] + Ly(L yu] + L t (L tu)

in terms of polar co-ordinates. On setting in

. 'du, . ^HJ . tu,
au ax -\

--ay -\
--dz

^x ty
'

^z

the changes dx, dy, dz obtained by allowing <f>
to increase by

d<f>
and holding r, fixed, we obtain immediately

7 14 1A\Lzu = -.
-

(4.10)

Similarly,

cos

U=-A [eq. (4.1)].

5. Electron in Spherically Symmetric Field.

Directional Quantization

Now back to physics ! Consider an electron of charge e

revolving about a fixed nucleus of charge Ze situated at the

origin. For Z 1 we have the hydrogen atom, for Z = 2
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singly ionized helium He+
,

for Z = 3 doubly ionized lithium

Ze*
Li 4

"*", etc. The potential energy is V --
;

we shall,

however, for the present take V(r] more generally as any function

of the radius r. The wave equation for the determination of

the energy levels is then

*^y + [E
_

K(r)tf = 0. (5.1)

On expanding in terms of surface harmonics
i/r

becomes a sum
of terms fl(r)Y l (/=0, 1, 2, ).

The differential operator
on the left-hand side of (5.1) sends the P term of this sum into

Y
i
times

Consequently each individual term must satisfy the differential

equation separately ;
we thus obtain a complete set of char-

acteristic functions of the form

The factor ft (r) depending only on r must be such that (5.2)

vanishes and \r*fi(r)fi(r)dr converges. Denoting the char-

acteristic numbers and characteristic functions of this differ-

ential equation by

Ei, fm(r) (n
-

0, 1, 2,
-

),

En i
is a (21 + l)-fold energy level, as the expression /nl(r)F,

contains 21 + 1 linearly independent characteristic functions

associated with this single characteristic value
;
we may choose

as a basis the functions

W =
fm(r) Y<f (m =-/,-,/- 1, /).

We thus arrive at three integral quantum numbers : the
"
radial quantum number "

n, the
"
azimuthal quantum number "

/,

and the
"
magnetic quantum number n

m. The energy level

depends only on the first two.

In justification of this nomenclature we determine the angular

momentum hQ of the electron with components
hLx

= ypz zpy ,
.

In quantum mechanics Lx ,
Lv ,

Lz are the operators (4.9).
Hence for

^<3>
= fnl (r) Y

(ri - e
in+

(a function of r and 0) (5.3)
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we have, in accordance with (4.10),

Lz ifj
= m-

</r,

and for the general characteristic function

* = fni(r)Y l (5.4)

with azimuthal quantum number /

L*<f*= 1(1+ !)<*.

Hence in the state described by (5.4) not only the energy has

a definite value E ni ,
but also the absolute value of the moment

of momentum

2 =
/(/ + 1)

. (5-5)

The significance of the azimuthal number is that it fixes this

magnitude. It is indeed remarkable that there exist states

/ = 0, n = 0, 1, 2, with spherically symmetric character-

istic functions
iff
= fn $(r} for which the moment of momentum

vanishes. In the states described by (5.3) not only the energy
and the absolute value of the moment of momentum have
definite values, but also the z-component of the moment of mo-
mentum assumes a definite value with certainty, for then

L z
= m, . (5.6)

Since a magnetic dipole moment

eh

(5.7)

is associated with the angular momentum hQ of the revolving
electron (the mass of the electron being denoted by /x whenever
there is danger of confusion with the magnetic quantum number

m), the influence of will be felt on subjecting the atom to a

magnetic field. The existence of the Zeeman effect under such

conditions can be traced to this cause. A fundamental ex-

periment to observe the magnetic moment of the electron directly
is due to Stern and Gerlach. Let a stream of one-electron atoms,
which are all moving in the direction of the #-axis and are in

the state (n, /)
with energy level Enb be subjected to an in-

homogeneous magnetic field in the direction of the s-axis. Let

the x- and y-components of the magnetic field vanish in the

(#-0)-plane, in which the beam moves, and let the 2-component
be a function of z alone. A magnetic dipole, the ^-component

of whose moment is sz ,
is then acted upon by a force -y- sz

az

in the positive ^-direction. In consequence of (5.6) the atomic

Pure Mathematical Physics



66 QUANTUM THEORY

beam should be broken up into 2/ + 1 smaller beams by the
force in the ^-direction, corresponding to the various values
m =

/, / 1, ,
/ of the magnetic quantum number.

On performing the experiment on silver atoms in the normal
state two beams, corresponding to n\ = 1, were observed

;

the value of the
" Bohr magneton/

1

the elementary magnetic
moment corresponding to one unit of angular momentum, was

eh
found to agree with the value obtained from (5.6) and (5.7).

Why the unperturbed beam corresponding to m = did not

appear remained unexplained.
The older quantum theory, which employed the quantum

number k = / + 1 with values 1, 2, ,
allowed m to assume

the integral values from k to + k
;

it seemed plausible to

exclude the case k =.-
0, although one was thereby led into

difficulties on applying the so-called
"
adiabatic hypothesis

"

to the behaviour of an atom under the influence of crossed
electric and magnetic fields. In the new quantum theory no
ad hoc hypothesis is required for this exclusion, as / can assume

only the values 0, 1, 2, . But according to either the old

or the present scalar wave theory there should exist an odd
number of permissible values of m for given k or /

;
the exclusion

of the case m = apparently required by the Stern-Gerlach

experiment cannot be accounted for on cither theory. Nor
can we explain the related fact that in the anomalous Zeeman
effect m may assume either an even or an odd number of values,

according to the nature of the atom under consideration.

Obviously something is lacking in our present scalar wave
theory as well as in the older formulation

;
we return to this

point again in Chap. IV, 4. The older quantum theory
described the situation met above as

"
directional quantiza-

tion
"

;
since the absolute value of the moment of momentum

was hk and the component along the z-axis was hm, it concluded
that the magnetic axis of the atom could assume only positions
described by the inclination 8 with the 2-axis determined by
the formula

cos0-~ (m = 0, i 1, 2,
- -

-, k).

Thus in the case k = 1 we should expect only three possible
orientations for the magnetic axis : parallel and anti-parallel
to the field, which we have taken in the direction of the 2-axis,
and perpendicular thereto unless we empirically exclude this

latter possibility m = because of the Stern-Gerlach experiment,
in which case we have but two. In either case we find ourselves
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faced with a serious dilemma, for the direction of the z- axis is

an arbitrary direction in space. In order to avoid this one

then assumed that the quantization was due to the influence of

the magnetic field, and consequently the preferred z-direction

was interpreted physically as the direction of the magnetic field.

But even so the difficulty is not avoided in the limiting case of

vanishing magnetic field, for the directional quantization should

be maintained in arbitrarily weak fields. Or stated more

physically, the radiation mechanism required by the Stern-

Gerlach effect for the orientation of the atoms, which were

originally in random orientation and precessing about the

z-axis, requires about 10 8 times as long as the greatest time

consistent with the observations. The stand taken by the new

quantum theory on this point is fundamentally different. The

possible states (u, /)
of the atom are described by the functions

i/r
of the (21 -f- l)-dimensional linear family

or by the vectors of a (21 -f- l)-dimensional space with com-

ponents xm . The z-component of the moment of momentum, as

well as the component in any arbitrary direction, is capable of

assuming only the discrete values hm (m ~
/, / 1, , /).

But in a state in which the z component, for example, assumes

the value hm with certainty there is only a certain probability
that any other component will assume a definite one of its

possible values h 0, h
( 1), ,

h
( /).

The name
"
directional quantization

"
is hardly an appropriate description

of this situation. 9

When the electro-static central force satisfies the Coulomb law

and originates in a nucleus of charge + Ze, the differential

equation (5.2) for the
"

radial characteristic function "/ fn \(
r

]

becomes

The character of this equation is unchanged on going over to

the new dependent variable v defined by rf
= e~*r v :

2a 4- a' 4-4- - -_ _ Ja_ +
|^

a + ^ j
+ ^ ^}v - a

We choose a in such a way that the constant term in the co-

efficient of v vanishes :

(5.8)
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We know from the general theory of linear differential equations
10

that there exist solutions of this equation in the neighbourhood
of the (regular) singular point r = in the form of a power
series

v = Z a^

in which the exponent /x begins with a certain value MO> which
need not be an integer, and runs through the values /x , /x + 1

,

Mo + 2, . On substituting this power series into the equa-
tion we find the recursion formula

/ F7 *. -2\

(5.9)

for the coefficients a^. In order that it be satisfied for
/LI + 1

(a^
=

0, a^i =\= 0) we must have

-
1)
=

/(/ + 1).

We thus have the two possibilities :

^ == / + 1 or ji
= /.

Considering the first possibility and taking the coefficient a j+1

of the lowest power as unity, all remaining coefficients can be

obtained by successive applications of the recursion formula

(5.9), as the denominator ^(^ -f- 1) /(/ + 1) never vanishes
;

let the solution thus obtained be denoted by v. The second

possibility does not lead to a solution, however, as the denomi-

nator in the recursion formula for
//,

/ vanishes
;

the second

solution of the differential equation can be obtained by quad-
rature from the first and involves logarithmic terms.

The power series for v breaks off if for a definite exponent

or

L* =

In this case / is of the form

e-*r . r i .

(polynomial of degree n in r) ;

it is finite at r = and the integral

/(r)/(r)rfr (5.11)
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exists, as is to be required. The corresponding characteristic

numbers E are the energy levels
;

on writing n in place of

n + 1+ I and solving (5.8), (5.9) for E we find

.

9
,

* (
'

'

The integer n, the principal or fofa/ quantum number, is

subject to the condition w > /. There exist no other solutions

for which the integral (5.11) converges.
8

The energy levels depend only on the principal quantum
number n ; the terms fur which n is a fixed number and
/ = 0, 1, ,

n 1 coincide in a single degenerate term En

of multiplicity

J-0
+ 1)

- n2
.

77ns theoretical result agrees with the empirical formulce for the

Balmer, Paschen, Lyman, etc., series. We find, in fact, the

expression

(v
E \1-

)
.

L7TC LTfCh/

expression for the Rydberg constant R in terms of the fundamental
constants of nature (the charge and the mass of the electron, the

velocity of light and the elementary quantum of action) agrees

numerically with its empirical value. All terms and therefore

all actual line frequencies v depend on the integer Z describing

the charge on the nucleus in such a way that \'v increases in

proportion with Z. Since the X-ray terms are due to the inner-

most electrons, which are but slightly affected by the outer

ones, we should expect to find that the hardest X-ray lines,

arranged in accordance with the atomic number Z, follow this

law. It was discovered by Moseley and gave a conclusive proof

of the fact that on going through the elements of the periodic table

the charge on the nucleus increases by e from element to element.

This law uncovers with unerring certainty the holes yet re-

maining in the system of known elements
;

at present we lack

but 2 (or 3) elements in the scries beginning with hydrogen,
Z = 1, and ending with uranium, Z = 92.

The characteristic functions associated with these energy

levels, which determine the relative probabilities of the various

positions of the electron, can be expressed in closed form in
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terms of the so-called Laguerre polynomials. The character-

istic function belonging to the normal state n = 1, / = 0, is

spherically symmetric :

*

,/,=
I-

*-'/"; (5.13)
Vna*

for hydrogen

a= 9
= 0-532 A (5.14)me2 x '

(According to the older Bohr theory, a is the radius of the inner-

most electronic orbit.) a determines the order of magnitude
of atomic dimensions. In the normal state hydrogen possesses

spherical symmetry (according to the scalar wave theory but

see Chap. IV, 8).

The radial characteristic functions r fnl (r] do not, however,
constitute a complete orthogonal system for a given / for the

full domain which we wish to consider : in addition to the

discrete term spectrum (5.12) we have the continuous spectrum
covering the whole region E ^ 0. We go no further into this

matter. 11

6. Collision Phenomena

The optical phenomena show that the quantum theory leads

to the correct energy levels, but they do not lend themselves

to an attempt to interpret the vector
i/r

in system space as a

probability. Collision phenomena, which deal with the de-

flection of electrons or a-particles under the influence of other

material bodies, are best suited for this latter purpose. The
fundamental experiments of Franck and Hertz, as well as those

of Davisson and Germer, belong to this latter category.

Neglecting the reaction of the moving particle on the per-

turbing body, the potential energy due to this latter may be

taken as a given function V(xyz) of position. Considering
a one-dimensional problem, the energy of the moving particle is

then

fl-s^+rw.
We can think of the curve y = V(x) as the contour of a hill

against which the particle runs. The wave equation for a

* The normalizing factor i/N/ira
1

is calculated from
oo

f f (e-Wadxdydz = 4* te
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state with given energy E is

j -j- l/i '('vJ V rrr VJ. (u.l)2m ax*

If we neglect for the moment the perturbing field V we obtain

as solutions of (6.1) the familiar de Broglie waves : ^ is a linear

combination of the waves eiax and e~** x proceeding in the positive
and negative directions along the #-axis, the wave number a

of which is determined by

(Aa)
2 -= 2mE or Aa =

/>.

Writing

~V(x) --= U(x)

equation (6.1) becomes

?t + [*
a - u (*)]

=
-

(
6 - 2

)
a.r

2

We now assume that as # -> i oo, f^(^) behaves in such a way
t-oo

that the integral f |[/(*)|</# converges; equation (6.2) then has

00

one solution which behaves for x -> + oo asymptotically like

elAX
1
and another, which is linearly independent of the first,

which behaves like e~ l * x in the same region.
This can most readily be seen by solving (6.2) by the method

of successive approximations. Let

and take as the th
approximation the function e ia *

;
in general

^nll is determined in terms of
*{/n by integrating the equation

Hence
oo

l r

(x
-

f) U(g) n (f) d. (6.4)

We restrict ourselves for the moment to a region .v ^ XQ such

that
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If |^n(#) |
SSfln f r all *> the integral (6.4) converges and we have

we can therefore take aQ = 1, an+1 = g#n . Then an = g
w or

Consequently the series for converges at least as fast as the

geometric series with ratio g. It satisfies the integral equation

% (6.5)

and is consequently a solution of (6.2). Since

1

(6.5) leads to the estimate

from which it follows that ^(x) behaves asymptotically for

x -> + oo like <//o(#)
= ^

l<ata?
. Not only is

i/r
^^

,
but also

_i_ ^, _j_^ t or the equation^

- cosa.r -

gives as an upper bound for the absolute value of the difference

on the left-hand side the quantity

which approaches as x ~> + oo.

The solution ^r(#) which we have found in the region x ^; %

can naturally be extended over the entire real axis by analytic
continuation. Since our considerations apply just as well for

#-> oo, we know that i/j(x) satisfies an asymptotic equation
of the form

if>(x)
~ be"* + b'e~~'* x for x ~> oo.
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le same time we must also have

- ~ i.(be*
AX b'e~iax).dx x '

(x) being a solution of the differential equation, $(x) is

[<**
- U(X)W

-
~=

0, + [
-

U(x)]f = 0.

iply the first equation by $, the second by ift
and subtract

;

nd

d

dx \l> -) =0dx dx /

^-0^ const. (6.6)
i.1 ,V f* .V

determinant (6.6) has the limiting value 2fa for x -> -f- oo

or A;
- > oo

2ia(W - &'*'),

frfr
- VV - 1. (6.7)

Hows from this that /; 4= 0. On multiplying ift(x) by 1/6

ave a solution whose asymptotic behaviour is described

ic equations

0(r) ~ '** + a'e"'** for A' --> oo,

</r(.v)
~ ^ ia * for A- -> + oo (6.8)

e a - 1
/;, a' --

b';b. (6.7) is now

I particle of definite energy runs against the potential energy

from the left, i.r. from .v GO. H7zm:w zn classical

anics the particle certainly eitlier gets over the hill or is throicn

according to whether its initial kinetic energy is greater or

than the maximnm of F(.v) f quantum mechanics states that

is a probability aj
2 that it gets over and a probability ja'j

2

// is thrown back. Furthermore, these probabilities are

nuous functions of the energy of the particle ;
the dis-

unity of the classical theory is completely broken down.
*

perform the experiment successively with a large number
irticlcs we find that they arc divided into two streams,
cordance with (6.8.), proceeding in the positive and negative
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directions along the #-axis
;

the relative intensities of these

are given by 1 and
|a'|

2 for x -+ oo, respectively, while for

x -> + o there exists only the positive stream of intensity

|a|
2

. Equation (7.5) thus expresses the conservation of the

number of particles and shows that we must consider the square

\a\* of the absolute value of the amplitude a as a relative intensity

or probability.
If the integral

+ oo

Adx < 1

the solution ^ is represented throughout the whole space by the

formula (6.3). In perturbation theory one is usually satisfied

with the first term ^ The theory of the familiar experiments
of Rutherford, in which oc-particles are allowed to fly in a given
direction with given momentum into and be deflected by the

field of an atom, has been developed by Wentzel in a similar

manner.12 The influence of the a-particle on the atom is thereby

neglected ;
on taking it into account we are led to the theory

of the experiments of Franck and Hertz, giving formulae for

the dispersed particles specified according to their various

discrete kinetic energies and their various directions. This

calculation has been carried through for hydrogen by Born and

Elsasser. 1 * A very important application of this picture of

corpuscular waves "
seeping

"
through a potential hill has been

made by G. Gamow and R. IV. Gurney and E. U. Condon to

explain radioactive decay.
14

7. The Conceptual Structure of Quantum Mechanics

The fruitfulness of the theory has been amply established by
the above applications and the examples given have served to

illustrate its physical interpretation ;
it now seems time to set

forth its general abstract formulation.

Consider a physical system of known constitution. EC ,

particular state, each individual case of such a system is r
e^

sented by a vector j of modulus 1 in a unitary system space. ft j

physical quantity associated with the system is represented^ ^
Hermitian form in this space. The fundamental question w^j
we put to the theory is not, as in classical physics,

"
What vain

has this physical quantity in this particular case ?
"

but rather" What are the possible values of the physical quantity A, and what
is the probability that it assumes a definite one of these value? M
a given case ?

" The answer to this question is : The
probabilitv
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that A assumes the value <x is the value *($) of the characteristic

form Ea. of A associated with the value a, where the vector j repre-
sents the case in question and the quantity A is represented by
the Hermitian form A in the system space. The quantity repre-
sented by A is capable of assuming only those values a which

are characteristic values of the form A. In accordance with the

equations

(S),

the sum of the probabilities is 1 and the value Afe) of the form
A is the mean value or expectation of the quantity A in the state .

Since all assertions concerning the probabilities in a given state

j are numerically unaltered when j is replaced by e j, where e

is an arbitrary complex number of modulus 1, we cannot dis-

tinguish between these two cases. The pure case or state is

consequently more properly represented by the ray J than by
the vector

,
and we must therefore operate in the ray field in

system space rather than in the vector field.

The significance of probabilities for experimental science is

that they determine the relative frequency of occurrence in a

series of repealed observations. According to classical physics it

is in principle possible to create conditions under which every

quantity associated with a given physical system assumes an

arbitrarily sharply defined value which is exactly reproducible
whenever these conditions are the same. Quantum physics
denies this possibility. We illustrate this by the example of

directional quantization. We know conditions under which we
can guarantee with practical certainty that the atoms of a

hydrogen gas are in the normal state. Let us therefore assume
that we can create conditions under which we can be certain

that the atoms under observation are in the quantum state (H, /)

with azimuthal quantum number / == 1 and energy E. A
certain quantity L z ,

which can, under these conditions, assume

only the values + 1, t), or 1 is associated with each direction

z in space. Stern and Gerlach have shown us how to sharpen
these conditions so that L z takes on a definite one of these values,

say L z
= ~f 1. According to the theory the utmost limit of

precision is then reached. If x is another direction in space,

then under these conditions which determine Lz and E only the

relative probability that the quantity Lf assumes any one of the

values -f- 1, 0, 1 can be given. Why is it impossible to go
further and insure conditions under which in addition Lr takes

on a definite one of the values, say 0, with certainty ? Because

the
t4 measurement "

of Lx ,
which is accomplished by separating
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the atoms into three classes Lx = + 1, 0, 1, is only possible
by creating conditions which destroy the homogeneity already
existing with respect to Lz . Polarization of photons is obviously
somewhat analogous to directional quantization of atoms. The
conditions for the production of a monochromatic beam of light
in a definite direction determine the energy and momentum of
the photons. To each orientation s of a Nicol prism corre-

sponds a definite quantity As which is capable of assuming only
the values I

;
if A, = + 1 the light goes through and if

Aa 1 it does not. With the aid of such a prism we separate
out the photons for which As

= 1 without disturbing their

energy and momentum. The utmost limit of precision is then
reached

;
a monochromatic pencil of polarized light is the most

homogeneous light possible. If we now place a second Nicol
of orientation a in the path of this beam, then naturally only
those photons which have A, = + 1 can pass through. But
the light which we thus obtain is of the same constitution as
if the first Nicol of orientation 5 were not used at all

;
the con-

dition that all the photons have A, = -f 1 is obviously destroyed
by the second Nicol.

Natural science is of a constructive character. The concepts
with which it deals are not qualities or attributes which can
be obtained from the objective world by direct cognition. They
can only be determined by an indirect methodology, by observing
their reaction with other bodies, and their implicit definition is

consequently conditioned by definite laws of nature governing
reactions. 15

Consider, for example, the introduction of the
Galilean concept of mass, which essentially amounts to the

following indirect definition :

"
Every body possesses a mo-

mentum, that is, a vector mt) having the same direction as its

velocity t>
;

the scalar factor m is called its mass. The mo-
mentum of a closed system is conserved, that is, the sum of the
momenta of a number of reacting bodies is the same before
the reaction as after it." On applying this law to the observed
collision phenomena data are obtainable which allow a deter-
mination of the relative masses of the various bodies. But
scientists have long held the opinion that such constructive

concepts were nevertheless intrinsic attributes of the
44

Ding an
sick/

1

even when the manipulations necessary for their deter-
mination were not carried out. In quantum theory we are con-

fronted with a fundamental limitation to this metaphysical stand-

point.
1 *

We have already seen, toward the beginning of this chapter,
that a co-ordinate x and its associated momentum p stand in
a peculiar relationship to one another : the precise determina-
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tion of either one of these quantities precludes the precise
determination of the other. In the state represented by the

-f 00

wave function f(x) Q^ ^dx=\] the mean values x = <*> and
00

given by
+ 00 -f 00

I x $(x) *l*(x}dx and T I $ T~dx.

No loss of generality is incurred by taking these mean values

as zero
;

the first can be made to vanish by replacing x by
x x or

*fj(x) by ifj(x + x
)
and the second by replacing tfj(x)

by e l -
ro?J

.^ Thc mean values (A^2 (
Ap)2 O f

(
x __ x^

(p /> )

2 are then given by

f 00

(A.r)
2 =

(A,, ~-

From these expressions the general inequality

A/> A* r- JA

ran readily be obtained (I am indebted to W. Paidi for this

remark) ;
the less the uncertainty in ,v, the greater the un-

certainty in
/>, and conversely.*

In general the conditions under which an experiment is

performed will not even guarantee that all the individuals con-

stituting the system under observation are in the same "
state,

11

as represented in the quantum theory by a ray in system space.
This is, for example, the case when we only take care that all

the atoms are in the quantum state (w, /)
without undertaking

to separate them, with respect to m by means of the Stern-

Gerlach effect. In order to apply quantum mechanics it is

therefore necessary to set up a criterion which will enable us to

determine whether the given conditions are sufficient to insure

such a
'*

pure slate." We say that the conditions
'

effect

a greater homogeneity than the conditions & if (1) every quantity
which has a sharp, reproducible value under has the same definite

*Cf. Appendix i at the end of the book.
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value under (' and if (2) there exists a quantity which is strictly

determinate under &' but not under . The desired criterion

is obviously this : The conditions guarantee a pure state if it

is impossible to produce a further increase in homogeneity. (This
maximum of homogeneity was obtained in classical physics

only when all quantities associated with the system had definite

values.)
In the pure state represented by the vector a = (#,-),

a quan-
tity Q represented by the Hermitian matrix Q = \\q tk \\

has the

expectation or mean value

i t k

The numbers

are the components of a positive definite Hermitian form A of

trace 1, i.e.

(Positive definite is to be understood here in the weakened
sense A($) ^ 0.) It is to be noted that \Q/ depends linearly
and homogeneously on the quantity \\q+ k \\

under consideration :

= tr (AQ). (7.2)

If a statistical aggregate A is created by subjecting a large number
of individuals of the physical system under observation to the

conditions (, then the mean value of a physical quantity Q
will be given by (7.2) where A is a certain positive definite

Hermitian form of trace 1 which is characteristic for the

aggregate even if the conditions ( do not guarantee maximum
homogeneity. The reason for this is that (7.2) is still correct

if we mix statistical aggregates, each of which does possess
maximum homogeneity, in any proportions ; any statistical

case may indeed be considered as a mixture of pure states.

As y. v. Neumann has remarked, this formula (7.2) can be derived

from the simple axioms 17
:

1. If P
1 Q are physical quantities and A a real number, then

<AP> = A^P/, <P + 0> = <P> + <fi>.

2. If the quantity Q is capable of assuming only positive
values (i.e. if the form Q is positive definite), then (Q/ ^ 0.

3. If Q is a pure number, i.e. if it is independent of all

physical conditions, then {Q) = Q.

Assuming not only that any physical quantity Q is repre-
sented by an Hermitian form, but also that conversely any
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Hermitian form represents some quantity associated with the

system, it follows from (1) that

i, *

where the coefficients a ki are independent of Q. (We shall

return to this assumption in Chap. IV, 9.) The matrix
A =

!|0,-fc||
must be Hermitian since <0> is always real. On

bringing A into the normal form Za,*^, (2) requires for the special
Hermitian forms of the type Q Zq i

x
i
x

i that Ja
t#f ^ for

arbitrary non-negative values qi ; consequently a, 2? and A
is positive definite.

The probability that in the statistical aggregate A the quan-
tity Q assumes the value K is

w = tr (AEK) (7.3)

where EK is the idempotent form associated with the character-

istic number K.

We can also distinguish
"
pure states

"
among general sta-

tistical aggregates,
" mixed states," by the fact that they cannot

be obtained by mixing two or more different statistical aggregates.
This corresponds to the theorem that an Hermitian matrix A of

the form (7.1) is not expressible as the sum B -\- C of two positive
definite Hermitian forms B and C which are not merely multiples
of A. This can be readily proved on taking the vector a =

(a,-)

as one of the co-ordinate axes in system space. The positive
definite Hermitian forms A with unit trace, i.e. the statistical

aggregates, constitute a convex region (5 in the sense that with
A and B their

"
centre of mass " \A + pB (A, p, arbitrary positive

numbers whose sum is unity) belongs also to @. A point of @
which cannot be considered as such a centre of mass of two

points of @ distinct from the point in question is called, following

Minkowski, an "extreme point" @ is the "convex core" of

the class (J of all extreme points, i.e. it is the smallest convex
domain which includes all the points of (. We cannot dispense
with a single extreme point of @

;
if we leave out but a single

point of the entire convex core shrinks together. We may
accordingly characterize the pure states as the

"
extremes

"
among

all the possible statistical aggregates.
It is often convenient to dispense with the normalization

tr A = 1
; (7.3) then gives the relative rather than the absolute

probabilities. The simplest statistical aggregate is that one

characterized by the unit Hermitian form with matrix 1
;

it

represents total ignorance. In thermo-dynamics the important
role is played by the canonical aggregate A = e~H t

k
*\ H is here
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the Hermitian form which represents the energy, k the Boltzmann
constant and the number 6 the temperature.

19

8. The Dynamical Law. Transition Probabilities

Having considered the general probability laws of the quantum
theory, we now turn to the dynamical law governing the change
in the state of a physical system during an interval dt of time.

The dynamical law states that this change is effected by

the infinitesimal unitary operator j- 77, where H is the

Hermitian form which represents the energy :

(8.1)

The peculiar significance of the energy in quantum mechanics

is due to its appearance in the dynamical law. We also consider

this law as a fundamental axiom of quantum theory of universal

validity. For the matrix X :

which characterizes a statistical aggregate of the pure state

described by the vector j (x t ) [cf. eq. (7.2)], we obtain the

equation
h d* ^ XH - HX (8.2)

on applying (8.1) and taking into account the fact the 77 is

Hermitian. This same equation also governs the change in

time of a statistical aggregate X for a mixed state. 20

For the integration of (8.1) it is convenient to choose as our

co-ordinate system the characteristic vectors of 77
;

the corre-

sponding characteristic numbers E n are the energy levels. We
call this particular system the Heisenberg co-ordinate

system, as Heisenberg tacitly employed it in his fundamental

paper on quantum mechanics. This Heisenberg co-ordinate

system is in general not uniquely determined
;

the essential

point is the decomposition of the system space 5R into the

characteristic sub-spaces 91' = $('), 3T - 9t("), as-

sociated with the various characteristic numbers 7T, ZT", .

The states represented by vectors j in such a characteristic

space are called quantum or stationary states
;

in them the

energy has a sharply defined value. The cases in which 77

possesses only discrete characteristic numbers include
"
con-

ditionally periodic motion/' the only ones for which the older
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quantum theory could be formulated. The nomenclature and

symbolism employed in the following is adapted to discrete char-

acteristic spectra, but this by no means precludes the possibility
that the spectrum is entirely or partly continuous. Equation
(8.1) becomes, on resolving it into components with respect to

Heisenberg's co-ordinate system,

hdxn .

and has as solution

xn (t)
= x n *-'

(
= K). (8.3)

This is an explicit formulation of the unitary transformation
->

j(f)
=

/(*) which the state vector undergoes in time t.

Since |#n (/)j

2
is constant, the probabilities for the various energy

values do not change in the course of time. The finite law

X(t)
- U(t)XU~

l

(t) (8.4)

for the dependence of the statistical state X(t) on the time /

is fully equivalent to the differential law (8.2).

The mean value q = q(l) of the physical quantity represented

by the fixed Hermitian operator Q :

q(t)
= tr (X(t) Q]

can, on taking into account the symmetry properties of the

trace, be written also in the form

q(t)
= tr [X Q(t)}

where
=

U~*(t)QU(t). (8.5)

Consequently the situation can be described either by con-

sidering Q as fixed for all time and the statistical state X(t) as

varying with the time in accordance with the law (8.4) and

this is the fundamental stand taken by quantum mechanics

or we can take the initial state X as representing the state of

the system for all time and allow the operator Q(t) representing
the quantity Q to vary with time in accordance with the law

(8.5). This latter interpretation lends itself to comparison with

classical mechanics. (8.5) is equivalent to the differential law

*

f = HQ - QH, (8.6)

for in virtue of (8.2) and (8.6)
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In particular, the quantity Q is constant in time, i.e. the prob-
abilities associated with it do not change in course of time, if the

Hermitian form Q which represents it commutes with H.

In Heisenberg's co-ordinate system equation (8.5) becomes

q~(t) = qnn '-*'-*# (8-7)

The matrix Q(t) is thus expressed in terms of components per-

forming simple oscillations with frequencies vm vn . The

corresponding amplitude is qmn . On going over from the wth

to the nth
stationary state the system loses an amount h(vm vn )

of energy ;
if this energy is radiated as light, its frequency

is given by
Vmn = I'm

- >V (8.8)

Classical mechanics collects together all the transitions from

a fixed level m to all possible levels n 1, 2, into a single
state of motion, the motion of the system in the mth

quantum
state, whose harmonic components have the corresponding
transition frequencies i> TOl ,

vm2 ,
. For any quantity A it

therefore associates a constant amplitude amn with the transition

m - n. But in classical mechanics (for systems with one degree
of freedom) we have

vmn = k <o(n), k = m n,

instead of equation (8.8). On multiplying the two Fourier

series A
}
B

e
ik* and

'

we obtain the Fourier series C with coefficients

ck = Z^rbs (r + s = k).

Accordingly classical mechanics associates with the quantity
C = AB the amplitudes

Cmn = 2>m, m-r
'

&m, m-s (r + S = m n), (8.9)

whereas quantum mechanics assigns to it the amplitudes

(8.10)

The difference between these two results lies in the fact that in

(8.9) both factors a, b have the first index m in common, whereas
in (8.10) the first index of b is the same as the last index of a.

This is in exact analogy with the difference between the
"

classical
"

and the correct Ritz-Rydberg combination principle. This was

Heisenberg's starting-point ;
the correct combination principle

indicates the pertinent- fact that the rule (8.9) for the multi-

plication of amplitudes must be replaced by (8.10). Admittedly
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such multiplication is not commutative, and it collects together

amplitudes which the older model assigned to different orbits.

We denote \amn \

2 as the intensity of the quantity A in the

transition m ~> n. When multiple energy levels occur
(

tl
de-

generacy ") only the sum 27kwn|
2

,
extended over all indices

m for which Em = E' and all indices n for which E n = E",
has an invariantive significance ;

in such a case this sum is

taken as the intensity of A in the transition E' -> E". If A +

is that portion of A in which 9t(/i') intersects 9l(E") the sum

defined above is the trace of A+A + .

Consider an atom with one or more electrons and let r be
the vector from the nucleus to a representative electron. Then

q
=-.

el, or in case there is more than one electron the sum

q = JTVt, extended over the various electrons, is the electric

dipole moment of the atom. In classical electrodynamics the

intensity of the light of frequency v emitted by the atom is calculated

from the amplitude q(i/) of the harmonic components of q with

the same frequency v in the following manner. f The rate at

which energy ilows through a surface element do at the point P,
whose distance from the atom at is large compared with the

wave-length, is given by

where q
1

is the component of q perpendicular to OP and dw is

the solid angle subtended at by do. We have further assumed
that the wave-length under consideration is large compared with

the radius of the atom. Since each photon of frequency v

carries with it energy hv, we postulate that this law is to be

taken over into quantum theory as follows : the probability
that an atom in state n goes over into state ri in unit time and
emits a photon of frequency v, whose direction lies within the

solid angle du>
}

is given by

We thus arrive at a definite rule for the calculation of the intensities

of the lines emitted by the atom. The fact that we can now make
such a prediction indicates a distinct superiority of the new

theory over the old. In particular, the transition n -> n' does

not occur if the corresponding coefficient in the Hermitian form

f By this we mean that the terms q(v)e
it>f + q(v)*-

|> ' occur in the harmonic

analysis of q.
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for q is zero. This constitutes the general selection rule. The
connection between the state of polarization of the emitted

light and the direction of oscillation of the electric moment is

also carried over into quantum theory. But a real derivation

of our intensity rule can naturally only be obtained by con-

sidering the question of interaction between the atom and the

ether
;

see 13.

Examples: 1. The Oscillator.

The Hermitian form

-f oo

J* #*) *(*) dx,
- oo

representing the co-ordinate x of the oscillating particle has,

as we have already found [(3.11)], the coefficients

qnn
,

==0_
if ri 4= n 1;

- l~hn
tfn.n-l A/o ?n,n-fl

> 2wo>

with respect to Heisenberg's co-ordinate system, in which the

energy is referred to its principal axes. We thus obtain the

selection rule n -> n 1
;

the quantum number n can only change

by If the oscillator then absorbing or emitting a photon of fre-

quency v = oj and energy hoj
y
in accordance with (3.10). The

selection rule makes it clear why no higher harmonics are ex-

cited in the simple oscillator. We have also found that the

matrix
||pnn '||,

which represents the linear momentum in Heisen-

berg's co-ordinate system, is given by (3.12)

__ _\ lhma>n . __ 1 lhma)(n ~\- 1)
Pn. n-l -

{ ^ g
, Pn, n-l -

{ ^ ^
'

I (8.13)

pnn , = for n9

4= n 1

2. Electron in spherically symmetric field.

The result (4.7) for surface harmonics yields the selection rule

/->/l (8.14)

for the azimuthal quantum number I
;

for / = only the transition

~> 1 is possible. On introducing the magnetic quantum number
m as in 4, the characteristic functions ^Jj depend on the

meridian angle < about the 2-axis only in the multiplicative
factor eim*

;
here

x iy
= r sin 9 e*-

{+
,

z r cos 0.
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In order to obtain the dependence of the matrices qx + iqy ,

qx iqyj q z on the transition m ~> m' we must evaluate the

integral
2r

\e(a<f>) e( m<f>) e(m'<f>) d(f>,

o

where a = 1, 1, 0, respectively. The integral vanishes

unless m -{- a = m. The only components of q* + *<7y
which do

not vanish are those corresponding to the transitions m -> m 1

in which the magnetic quantum number decreases by 1
; for

^x
-

*<?y ,
m -> m {- I

] for q zi m -> m.

This last selection rule cannot be obtained from the spectra
themselves as long as the terms corresponding to different

values of m (\m\ ^ /) coincide. But these terms are broken

up into their various components by a homogeneous magnetic
field in the direction of the s-axis (Zeeman effect). On "

longi-

tudinal
"

observation of the light emitted in the ^-direction we
find instead of the one line (n, /)

~>
(n', /') several left- and right-

circularly polarized components, the former of which arise from

the transitions m -> m 1 and the latter from m-> m -\- \.

On "
transverse

M
observation, e.g. along the y-axis, we find

two transverse linearly polarized lines arising from m ~> m 1,

and in addition a longitudinally (i.e. along the s-axis) polarized
line corresponding to the transition m -> m. (Polarization as

here used means the direction of oscillation of the electric dipole,
and therefore the direction of the electric field strength.)

In the term spectrum of the alkali elements, which is, however,

typical in this respect, even for the more complicated spectra
of the other elements, we distinguish between several series by
means of the letters s, />, d, /, ,

. Each series consists of

infinitely many terms which we number in the direction of

increasing frequency by the integer n. It is found convenient

to let n run from 1 on in the ^-series, from 2 on in the />-scries,

from 3 in the d-series, etc. The values of the terms us, np }

nd, are then given by the
li

hydrogen-like
n
formula

R

(n + if)*

1

in which K =
AC.,,

K
P} /c^, is a correction term depending but

slightly on n, the numerical value of which but rarely exceeds

1/2 and is very close to for high series (/, g, . .

.). Only terms

lying in neighbouring series combine to produce a line, i.e. an

s-term combines only with a />-term, p only with 5 and d, d with

p and /, etc. In particular, the transitions np -> Is give rise
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to the principal series, which also appears in absorption, nd -> 2p
to the lines of the diffuse series, us -> 2p to the sharp series,

and n/-> 3d to the Bergmann series. 21

The alkalies A are univalent, i.e. in chemical reactions only
one electron, the valence electron, plays a role

;
the others,

together with the nucleus, constitute an inert closed shell. It

is therefore reasonable to assume that the optical spectra of

the alkalies are caused by quantum jumps involving only this

valence electron, while the core A* remains in its normal state.

We have seen above that hydrogen in the normal state is re-

presented by a spherically symmetric wave function
i/r ;

we
therefore assume, disregarding the reaction of the valence

electron on the core, that this feature of the core being
"
closed

"

is to be expressed by ascribing spherical symmetry to it.* We
have then to deal with the problem of an electron in a spherically

symmetric field, which we have already discussed above. In

accordance with the empirical combination principle and the

theoretical selection rule for the azimuHial quantum number /,

the s, p, d, f, terms are to be taken as having / = 0, 1, 2, 3,

respectively, n then runs from / + 1 on in the series with

azimuthal quantum number /, as in hydrogen.**

9. Perturbation Theory

The problem with which perturbation theory is concerned is

the following : Let the energy H consist of two terms H~H f \V
}

the second of which, the perturbation term \V, is small compared
with the first

;
this we express by the

"
infinitesimal

"
numerical

constant e, of which powers higher than the first are to be

neglected. Assume that the quantum problem for the
"
un-

perturbed system
"

with energy PI has already been solved, so

that the Hermitian form H has already been brought into

normal (diagonal) form, and let 3T, SR", be the character-

istic spaces of H with characteristic numbers E', E
n

',
. The

problem is to find the solution of the equations for the
"

per-
turbed system

"
with energy H.

In order to illustrate the typical difference between degenerate
and non-degenerate systems we first consider the system space as

2- instead of oo -dimensional
;
then

H - "

E,
eW.

* Why He and not H is the first closed atom is only to be understood as
the result of a profound modification of wave mechanics

;
see Chap. IV.

**
Concerning the introduction of the "true quantum number" for

elements other than hydrogen, see Chap. IV, 10.
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If E l 4= E* the unitary transformation which brings H into

diagonal form differs from the identity only by terms of order 6.

Consequently the probabilities l^]
2

, |#2
|

2 that in the pure state j

H has the values E lt E z will change only by amounts of the

same relative order e
; they remain constant to the same ap-

proximation with which eW may be neglected in comparison
with H. But the situation is quite different for degenerate

systems, for which E l
= E2

= E, for the principal axes of H
are then indeterminate and this arbitrariness is expressed in

the
"

instability
"

of the system under the influence of a per-
turbation. We set up that normal co-ordinate system e/, e 2

'

in which W assumes the diagonal form
;

the co-ordinate vectors

are then also characteristic vectors of H, since E
l
= E2 . But

these vectors can obviously differ arbitrarily from the original
co-ordinate vectors e^ C 2 ,

whereas the energies /ir/, hv2

'

can only
differ from E by a term of order e. On returning to the original
co-ordinate system we have

where d l (an ,
a 2 i), Q 2

~
(
a i2> ^22) are two mutually per-

pendicular vectors whose directions coincide with those of e/, e 2 '.

The probabilities for the two states e^ e 2 vary periodically in

time with the small beat frequency v>2

'

v^ (resonance between
states c lf C 2). Quantum states with the same energy are therefore

in resonance with one another. The magnitudes of the components
of in the characteristic spaces $R', $R", ,

i.e. the probabilities
for the various numerically different values of H remain ap-

proximately constant under a small perturbation, but this is

not the case for the absolute values
\x n \

of the individual com-

ponents xn resolved along the axes of an arbitrary Hcisenberg
co-ordinate system of the unperturbed system.

In accordance with the foregoing we can formulate the

perturbation problem in two forms : I. Determine the change,
due to the perturbation, in those states in which the energy
H of the unperturbed system is determinate. This formulation

has a sound physical interpretation if we consider the perturba-
tion as acting during a time interval /

lt
/ 2 . We then find how the

probabilities for the various quantum states change under the

influence of the perturbation** II. Determine the quantum
states and energy levels of the perturbed system, i.e. the char-

acteristic values and characteristic spaces of H. We ask in

particular how the terms are broken up and displaced under the

perturbation. We consider II first.
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We first decompose the Hermitian form W into two parts :

W$ + V. To the first belong those portions of W in which

a characteristic space 81', 9ft", of H intersects itself, and to

V those in which two different characteristic spaces intersect.

If the characteristic values of H have but finite multiplicity
the problem of bringing W, that part of W in which 9ft' intersects

itself, into diagonal form deals only with the space 9ft' of a finite

number of dimensions. If 91' is not simply a one-dimensional

space, the resonance phenomena mentioned above will appear.
The co-ordinate system, consisting of characteristic vectors of

//, is now more precisely specified, for now W also appears as

a diagonal matrix
;

let En be the characteristic values of the

H + eW^o = H so obtained. The single term value
'

asso-

ciated with 9ft' has in general been resolved into as many different

characteristic values En of H as there are dimensions in the

sub-space 3ft'.

The remainder V \\vmn \\
of the matrix is such that vmn =

if the characteristic values Emi En of H are equal. The in-

finitesimal unitary rotation

8*= 8 '

C*, C=
\\Cmn\\,

of order e transforms H into H + 8H where

8H = e(HC - CM) ~ e(HC - CH).

On choosing this transformation in such a way that 8H = eK,
H = H -f eF goes over into H

;
this can be accomplished by

choosing cmn = if Em = En and

otherwise. The characteristic values E n of H are therefore the

energy levels of the perturbed system of energy H if we neglect terms

of order e 2
.

WQ can be considered as the time mean of the perturbation

terms, averaged over the motion of the unperturbed system.
For by (8.7) the mean value of the element amn (t) of the matrix

A(t) 9
which represents an arbitrary physical quantity of the

system, is amn or 0, according as vm = v n or not. In statistics

angular brackets are often used to denote the mean value of

a quantity ;
we may therefore write

W,= <JV>, H =<H>.
The solution of II naturally provides an answer to the

question I. But it is more convenient to employ the method of
variation of constants for the calculation of the effect of the

perturbation over a limited time interval the smaller the
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constant 6, the longer we may take this time interval to be.

Assume that at time / = the system is in the quantum state

and that the perturbation begins to act at this time
;
we ask

for the probability that the system will be found in the state

n at time t. That is, we seek that solution of the equations

- I ~; ---- vn x n +
* Z Wnm xm (n - 0, 1, 2, )

i ai n m

which reduces to

X 1, l

at time t 0. Writing

the equations for n are

~f .

e V H' '<**- *m>'
b n i *-r i ' n m b m c

>

I fl m

for e -~
0, n

-~ 0. Neglecting terms of order e 2
,
we can take

the initial conditions

as the th

approximation ;
on substituting these values in the

equation we obtain as the first approximation

n
- - T- ' ---------------

n
k ^ V n

On setting VQ vn = i/, the desired probability is

2 __.- 2

__ 2[1
~ cos (//)]

i

u fqn----
Jfr2

---
i

tt ^i V^ 1
)

It is to be noted that in accordance with this result the probability

of transition from state to state n is determined by |H 0n |

2
. In

the case of resonance (vn
-- vu) the transition probability in-

creases at first with the square of / :

| r 1 2 __ f^\ .III/ 2/2'

'

~"
\h) '

10. The Problem of Several Bodies. Product Space

A physical system consisting of two particles of masses m
}
m

',

co-ordinates A: y z
;

#' y' s' and linear momenta
J), p', has as

its Hamiltonian function

Pure Mathematical Physics



QUANTUM THEORY
ere V is the potential energy. We assume, as in the older

ysics of central forces, that we are here dealing with an action

a distance so that the potential energy depends only on the

lultaneous positions of the two particles. This assumption
turally breaks down when, in accordance with the theory of

ativity, we take into account the finite velocity of propaga-
n of the disturbance, which requires the introduction of a

d. The wave function ^ of the system will depend on all

co-ordinates xyz\ x' y' z' in addition to t\ the operators

responding to these functions in the domain of such functions

are multiplication by x, ; #',, and to the linear

A 4-U A '

<-'
h * h *'

imenta correspond the derivatives -
, ;

-
-,, .r

i ^x
'

i *bx

3m (10.1) we then obtain the wave equation

3 must ask for the probability that the one particle is to be found
a point P and, simultaneously, the other is to be found at a

\nt P' . The probability density is accordingly to be computed
a 6-dimensional space with co-ordinates x y z

;
x y z.

deed, the wave field is not to represent directly occurrences

cing place in physical space, but is to determine the appear-
ce at definite positions or with definite energies and momenta

;

jre is consequently nothing absurd in the fact that its medium
this abstract 6-dimensional configuration space.
In order to be independent of the special procedure by which

5 scalar wave mechanics puts together two systems a, 6 to

m a single system C, as suggested by this example involving
; Hermitian forms representing the co-ordinates and momenta
the two systems, we must first discuss the multiplication of
ices from a purely mathematical standpoint.
With each vector J = (#,.)

in a space 9t of m dimensions and
:h vector t)

=
(yk )

in a space (3 of n dimensions there is

>ociated a vector j
= j X

t)
with components

*i* = x&k (10.3)

an m n-dimensional space 2 = 9? X <3, the product space.
e components are here numbered by means of the index

ir (ik)
= 1. The totality of vectors 5

= X
t)

do not them-
ves constitute a linear manifold, but their linear combinations
the entire product space X. With the linear correspondences
in 91 and B in @ :

yk
- = k ' k y k
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is associated a linear correspondence C A X B in % :

>,*

or

*/'
= 2cnzh c,,,

= a,,A'* [/
=

(ik), /' = (i'k
1

)}.
I

Naturally, to this multiplication corresponds the law of com-

position

(A X B)(A l X 50 - (AA l X 55,),

where A, A
l
are correspondences of 91 on itself and 5, 5 X are

correspondences in @. A co-ordinate system in 9i and one in

@ together determine a co-ordinate system in J
;

if the co-

ordinate system in 9t is subjected to the transformation A and
that in @ to the transformation 5, then the co-ordinate system
associated with them in J undergoes the transformation A X B.

In accordance with the equation

d(x ty k )
-- dx

l y k + x
t

-

dy k ,

to the infinitesimal correspondence H in 9t, ^ in @ corresponds
the infinitesimal correspondence

(// x l,j + (l r x 7) (10.4)

in X, where l r , 1, denote the unit matrices in SR, @, respectively.
All of the foregoing is applicable to arbitrary vector spaces.
When JR and @ are both unitary spaces, then X is also, for by
(10.3)

is an invariant if Zxrr f , S\f ky k are
;

yl X B is unitary if .4 and
5 arc.

Accordingly, two physical systems ft and & are compounded
to form a total system C as follows. The system space X of C

is 9? x @, where 9i is the system space of ft and @ of b. Let

the arbitrary physical quantity a in 9i be represented by
the Hermitian form A

;
on replacing all these forms A by

A X 1,, where \ 9 is the unit form in an arbitrary space @, there

exist between these latter exactly the same relations as between

the A, so that from the solution of a quantum problem in 91

there arises a solution for the corresponding problem in 91 X @,
but there exists no real distinction between the two. In the

system C obtained by composition we have therefore to as-

sociate the Hermitian form A X 1, with a quantity a of a and

l r x B with j3 of 6, where A
y
B are the forms associated with

a, j8 in 9t, @, respectively. The totality of quantities of the

composite system C is obtained by starting from the quantities
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92 QUANTUM THEORY

belonging to the component systems a and 6 and multiplying
and adding them together in all possible ways. The quantities
a of ft commute with the quantities J3 of 6, for

(A X !,)(!, X B) - A X B - (l r X B)(A X 1,).

We refer to the content of these last two sentences when we

say that C consists of two kinematically independent parts a and 6.

The two systems are dynamically independent if the energy
H of the composite system is the sum of the energies //(*),

of the partial systems :

i) -HI x //< 2)
).

The infinitesimal unitary correspondence TJ-
H in the total

system space is then that one which is due to the infinitesimal

unitary correspondences rr- //(*), -rr H^ in the two original

system spaces [(10.4)]. If //(*) and //< 2
) are both in diagonal

form, then H is also, and the characteristic numbers are given

by
E

t
--= E?> + EP or Vl

-
tf> + 42}

(I
-

(ik)\

If we have a pure state for the total system which is repre-
sented by the vector c of absolute value 1 and components
cik ,

and if Q = ||<?tt'||
is an arbitrary quantity in a, then the ex-

pectation of Q in the pure state C is

This has the form (7.2) with

^H
Afe) is the Hermitian form

k

in 3R. But we see from this that we are not dealing with a pure
state in ft, for a ti

/ will not in general have the form a
{d^. Con-

ditions which insure a maximum of homogeneity within C need

not require a maximum in this respect within the partial system a.

Furthermore : if the state of a and the state of i are known, the

slate of C is in general not uniquely specified, for a positive definite

Hermitian form \\aik , t
> k '\\ in the product space, which describes

a statistical aggregate of states c, is not uniquely determined by
the Hermitian forms

, i'kj a ik< ik'
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to which it gives rise in the spaces 9R, @. In this significant
sense quantum theory subscribes to the view that

"
the whole

is greater than the sum of its parts" which has recently been
raised to the status of a philosophical creed by the Vitalists

and the Gestalt Psychologists.
The kinematically independent parts into which a system

can be resolved need not be spatially separated, nor need they
even refer to different particles. We can, for example, resolve
a single particle, whose physical quantities can all be expressed
in terms of x, y, z

; p x , py> p z ,
into three partial systems with

fundamental quantities #, p x
|
y, py \

z, p z . For quantities
which belong to different partial systems, for example a quantity
which can be expressed in terms of #, /> a

. alone and one which
is in terms of y, py alone, commute with each other in the sense
of matrix multiplication.

In the perturbation theory we are usually concerned with a

system which consists of two kinematirally independent parts
and which are almost dynamically independent. Disregarding
the interaction zW for the moment, let hv n and hp r be the energy
levels of the two parts, so that h(v n + p r )

are the energy levels

of the unperturbed total system. On writing in equation (9.1)
s --=

(n, r) in place of and s' = (n
r

, r'} in place of n, whence

" = ("I + Pr) (*> n
> + Pr')

= V n n' + Prr> \

Vnn' = n Vn', Prr'
=

Pr
~

pr',

we find as the probability that the total system goes over from
the state s to the state s' during time / :

~~ COS "nn/ + P"'*
I u/f > '-- ' Wnr

>
nr

The probability that the first system will be found in the state
n after time

/, the total system having been in the state s ~~=
(nr)

originally, is obtained from (10.5) by summation with respect
to r'.

11. Commutation Rules. Canonical Transformations

The development of wave mechanics in 1-3 went beyond
the general scheme of 7 and 8 in that it employed certain

specific Hcrmitian forms to represent the co-ordinates and
momenta of the particle. We are now interested in seeing how
this can be formulated in an invariant manner, without recourse
to any special co-ordinate system in system space.

For the Hermitian forms q, p representing a rectangular
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94 QUANTUM THEORY

co-ordinate and its associated momentum we postulate the

commutation rule

pq-qp = ;L (H.l)

If the system has only one degree of freedom, these two quantities

appear as canonical variables in classical mechanics. All physical

quantities of the system are then functions of p and q ;
in order

to avoid complications we restrict ourselves to polynomials f in

p and q }
and assume, in particular, that the Hamiltonian function

H has this form. What are we to understand by the derivatives

fp and fq of / with respect to p and q in this domain in which

p and q are not commutative in multiplication ? We should

in any case require that differentiation with respect to q should

obey the following postulates :

(1) />.
=

0, fc
= 1

;

(
2

) (/ + g)q
=

fq + g* and
(
a/)o = a '

/a, where a is a number
;

(3) (/*)=/,'*+/*..
We see immediately that these conditions uniquely determine

the derivative of a polynomial /, unless they happen to lead to

contradictions. But that they do not lead to contradictions

can be seen from the fact that they are obeyed by the definition

ih'f,=fp-pf. (11.2)

(1) follows immediately from the commutation rule (11.1), and
the linearity (2) of the process is evident. (3) is proved by the

formula

(fg)p
-

p(fg)
-

f(&p
-

pg) + (fp
-

pf)g

which involves only the distributive and associative character

of matrix multiplication. Similarly we can show that

-ih-fp =fq-qf. (11.2)

The fundamental dynamical law gives us the equation (8.6) :

for any Hermitian form /. On applying this equation to p and q
which obviously suffices to establish the corresponding result

for any polynomial / of p and q and comparing it with the

formulae (11.2) applied to the particular function //, we are led

to the familiar Hamiltonian equations of classical mechanics :

-
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// is a universal trait of quantum theory to retain all the relations

of classical physics ; but whereas the latter interpreted these re-

lations as conditions to which the values of physical quantities were

subject in all individual cases, the former interprets them as con-

ditions on the quantities themselves, or rather on the Hermitian

matrices which represent them. This is the more significant
formulation which the new quantum theory has given Bohr's

correspondence principle.
The commutation rule (11.1) is of a rather remarkable

nature. It is entirely impossible for matrices in a space of a

finite number of dimensions, and it alone precludes the possi-

bility that in an oo -dimensional space q (or p} have only a discrete

spectrum of characteristic numbers. For on referring q to its

principal axes

q
=

|kmn||, q*n = <?n, ?mn = (m 4= H) ] p = ||/>mn||,

the left side of the commutation rule has the components
Pmn(q n ?m) i

hence the main diagonal consists of nothing
but zeros ! The question arises as to whether it can be con-

cluded from (11.1) alone that the forms representing q and p
can always be given the form

-f oo + 00

*

oo

for an arbitrary vector ^ with components ^ft(x)
on employing

an appropriate co-ordinate system in system space. We shall

see in Chap. IV, 15, that, on introducing a certain irreducibility

condition, this is in fact the case.

On taking into account the three space co-ordinates qa and
their associated linear momenta

/? (a
=

1, 2, 3), we have in

place of the one commutation rule (11.1) the following :
M

P*Pp PfiP*
=

. 1*<lfi
~ W = for a11 *.

*
1fiP* a

The same commutation rules apply to the case in which we have

several particles, the only difference being that then a runs

through 6, 9, values, according to the number of particles,

instead of 3. These commutation rules are the necessary and
sufficient condition that the dynamical law, which governs the

time rate of change of the state vector in system space, leads

to the Hamiltonian equations for the
"
canonical variables

"

<?<*> Pa representing the co-ordinates and associated momenta of

the various particles composing the physical system whatever
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the dependence of the Hamiltonian function H on these quantities

may be.

In classical mechanics the Hamiltonian equations are invariant

with respect to canonical transformations** In a system of

/ degrees of freedom the transition from a set of variables qat pMt

describing the state to a set q^ p
f

A (a
=

1, 2, , /) is a

canonical transformation if the difference

ZM* - ZPdqa (11.5)

is a total differential. If, for example, the qa are subjected to

a transformation

q*
=

4>a(q'i q/)

among themselves, the pA must transform as the components
of a

"
covariant vector'* in <y-space in order that the whole be

a canonical transformation (" extended point transformation ") :

Perhaps the simplest canonical transformation is that in which
the roles of q and p are interchanged :

Pa = q q'*
=

p*-

The canonical transformations constitute a group [cf. Ill, 1]. For

the identity, i.e. the transition from (p, q) to (p, q), is a canonical

transformation
;

the inverse (p
f

, q) -> (p, q) of a canonical

transformation (p, q) -> (p' 9 q') is also canonical
;
and from the

canonical transformations (p, q) ->
(/>', q') 9 (p

f

, q') -> (/>", q"}
it follows that the resultant transformation (p } q)

-+ (p" f q")
is also canonical, for if

are total differentials their sum

is also.

An infinitesimal canonical transformation is one in which

p' t q' differ infinitely little from p 9 q. We can consider it as

an infinitesimal deformation of the 2/-dimensional (/>, ^)-space
which takes place in the infinitesimal time interval e = 8/. We
introduce the components 8/>, 8<?

of the displacement vector by
means of the equations

Pa P = e 8P*, q'
~~

q
= 6

*<i
'
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Since (11.5) must be a total differential,

p^dT (11.6)

must also
;

in our case T must differ only infinitesimally from

v We may therefore write

considering S as a function of pa and q'x we have, in accordance
with (11.6),

as , as

or

Since we may legitimately neglect terms of order e 2
,
we may

identify q'a with qa on the right-hand side of these equations.
We call S the generating function of the infinitesimal canonical

transformation.
In accordance with the Hamiltonian equations, the state

of a system, represented by a point (/>, q) in
(/?, <?)-space, goes

over into a state (p + dp, q + d<?) during time dt. If we follow

this transition for all possible initial states (/>, q} we obtain an

infinitesimal deformation of the space whose points represent
the state of the system. The Hamiltonian equations assert that

this deformation is an infinitesimal canonical transformation with

generating function H dt. It follows from this without any
calculation that these equations have a significance which is

independent of any particular choice of canonical variables.

Now in quantum theory the Hamiltonian equations (11.3)

assert that the state vector j in system space undergoes the

infinitesimal unitary rotation

dt = - *

HI, (8.1)

so the infinitesimal canonical transformation of the quantities

/>, q is here obtained by subjecting the argument in the Her-

mitian forms representing them to the infinitesimal rotation

cs ie

We find that the increments of the quantities pa , qa are in fact

e . 8qa = (Sq*
-

0.5), e . 8/. = (Sp.
-

7
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and, in virtue of the commutation relations (11.4), this agrees

exactly with (11.7). On generating a finite canonical trans-

formation by the successive application of an infinity of in-

finitesimal ones we arrive at the result that the unitary corre-

spondences of system space on itself in quantum theory :

correspond to the canonical transformations of classical mechanics ;

more precisely, only those for which the matrix U is expressible
in terms of the matrices p, 9, but we may for the present pass
over the question as to whether every matrix U can be obtained,
or at least arbitrarily closely approximated, in this way. Since

the commutation rules (11.4) remain unchanged under rotations

of the normal co-ordinate system, they are valid for an arbitrary
set of canonical variables. This is also evident from the fact

that they are the conditions that the dynamical law (8.1) lead

to the Hamiltonian equations

_ -__
dt

~~ ^ dt
""

T>q

*

The general procedure for the quantum mechanical treat-

ment of a physical system suffers from the disagreeable fact

that the expression for the energy in terms of the canonical

variables must be taken from the classical model, and in ad-

dition the transition to quantum mechanics is even then not

unique, for the model offers no means of telling whether a

monomial such as p
2
q is to be interpreted as p

2
q, pqp, qp

2 or

a linear combination of all three [cf. IV, 14]. The provisional
character of such a procedure is clear, but the results so far ob-

tained seem to justify the hope that the path we have entered

upon will lead to a unique formulation of the laws governing
the actual physical phenomena. We need then concern our-

selves longer with the general mechanical scheme.

12. Motion of a Particle in an Electro-magnetic
Field. Zeeman Effect and Stark Effect

Let the spatial co-ordinates xyz now be denoted by x l x z x3

and the time t by x . If
<f>

is the scalar and c 21 the vector potential
of the electro-magnetic field, then in the theory of relativity

(- <, SU ,)
=

(fa, fa, fa, fa)

are the components of a vector in the space dual to the 4-di-

mensional world. Let

=
*'
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^10) ^2o> ^30 are the components of the electric field strength @,

c(F23 , ^31, ^12) the components of the magnetic field strength Jp.

Denoting the components of the velocity of a particle by
v ij V 2> V 3> its proper time is

ds = Vdt* - (d%\ + dx\ + dxp/c*
=-- dt Vl - v*/c* (v*

-
v\ + v\ + vl).

dx
With the world vector u* = ~~ is associated the dual u^ with

components
u r =^ur

(r= 1, 2, 3), UQ
= - C*UQ

.

The invariant equations of motion for a particle of mass m and

charge e are

= _ M
* ^ _= o

or

d

-$^ =
-e(F,9+ZFlk vk) (1

= 1,2,3). (12.1)
^^ \

jfc
= 1 /

The right-hand side is in fact the ponderomotive force

-
.(e

+
J[D$]).

These equations arise from the Hamiltonian function

H =
efa + c Jni*c* + Z (p t + efa?, (12.2)^ i- 1

in which x
l
x 2 x^ ; pip 2 pz arc the canonical variables. In fact,

the Hamiltonian equations

|
=

^S"
~~

Wi~ V
yield

in the remaining equations

*l ^ - = - ^/^ + c

*< V
the left-hand side is

_rf(mu,)-

But this is the desired equation (12.1) :

_ _~
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The negative energy H is the time component pQ of the dual

vector whose space components are the components of linear

momentum p = (p lt p 2 , />8),
so the equation (12.2) can be written

in the rational form

i(Po + *A>)
2 ~ T (Pi + *W' = "V.

C i = 1

From this we obtain the simple rule : The influence of an electro-

magnetic field on a particle of charge e can be expressed by re-

placing p* by pA + <A* in the equations of motion for a free particle.

On going over to quantum theory /> becomes the operator
h ^
T and is contragradient to the 4-dimensional displacement
i ^ b

d%^ as is seen from the equation

Our rule is now : On introducing afield of potential <f>#

must be replaced by ---h T-<&* (12.3)
^xa txa h r v 7

in the wave equation of the particle. Only $0 has a simple physical

significance ;
it is therefore to be assumed that the laws which

govern \fj
remain invariant on replacing ifj by <?

tA
i/r,

where A is

any real function of position in space-time. On the other hand,
in the classical theory of the electro-magnetic field only the

field strengths, and not the potentials, have an objective signifi-

cance, i.e. the laws are invariant on replacing </>ft by < a
--

,

uX^

where /x is also an arbitrary function of the xa . On examining
our wave equation for these invariantive properties we find

that it is not invariant under each of them separately, but that

there must exist a certain relation between A and p. The field

equations for the potentials *p and
</> of the material and electro-

magnetic waves are invariant under the simultaneous replacement

f

by e^ -0 and ^ by <f>A
- -

;

here A is an arbitrary function of the space-time co-ordinates.

This
"
principle ofgauge invariance " is quite analogous to that

previously set up by the author, on speculative grounds, in

order to arrive at a unified theory of gravitation and electricity.
25

But I now believe that this gauge invariance does not tie to-
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gether electricity and gravitation, but rather electricity and
matter in the manner described above. We shall discuss this

principle more thoroughly in Chap. IV
;

its significance and
its interpretation will then be more apparent.

On passing to the limit c -> oo in (12.2), after separating
out the factor me2

,
we return to ordinary mechanics :

On neglecting terms which are quadratic in the
<f> it

we find, in

addition to the kinetic energy pt/2m, the potential

V - -
e<f> + -

(1)91).m (12.4)

We have already made use of the first part, that due to the

electric field, in 5. If we have, in addition to the field originat-

ing in the nucleus, a homogeneous electro-static field in the

direction of the 2-axis and of strength F }
for which

(f>
= F z,

it adds the perturbation term

W - eF z

to the energy. A homogeneous static magnetic field is

obtained from the vector potential c 51 -
[rj, t = (x, y, z) ;

Li

this adds to the energy the perturbation term

i.e.

(12.5)

Zeeman Effect. If the homogeneous magnetic field strength,
of magnitude ||, is in the direction of the 0-axis, the per-
turbation term is

(12.6)

On choosing the characteristic functions
ifjffl

as our co-ordinate

system in the system space of the functions
iff,
W

',
as well as

the energy of the unperturbed atom, is in diagonal form
;

in

the state defined by nl, m it has the value

ho m. (12.7)

Pure Mathematical Physics



102 QUANTUM THEORY

The components (nl y m) -> (wT, m'} }
consistent with the selection

rule for m, into which the line with frequency v =
j-
(Eni

- En >i>)

is broken up give rise to but three lines : one corresponding to

all the transitions m -> w
;
which is linearly polarized in the

direction of the #-axis and is undisplaced ;
one which is circularly

polarized perpendicular to the z-axis, the frequency v of which
is displaced by + o (m -> m 1) ;

and one which is circularly

polarized in the opposite sense, with frequency v o instead

of v (m -> m + 1). This normal Zeeman effect is found only
in the so-called singlet lines.

Stark Effect. In accordance with the general perturbation

theory, the displacement and resolution of terms in the presence
of a homogeneous electric field is determined, to terms of first

order, by the matrix

eF- <s>.

In consequence of the selection rule f-> / 1, <z> = 0, unless

accidentally all energy levels whose azimuthal quantum numbers
differ by 1 coincide. Ignoring this exceptional case, we should

expect to find no I
st order perturbation effect increasing linearly

with the field strength F (linear Stark effect], but only a quadratic

effect, which is much smaller. This is in agreement with the

experimental data on alkali atoms. Hydrogen is, however,

degenerate, since for it energy levels with the same principal

quantum number n and / = 0, 1, ,
n 1 coincide. The

calculations for this case have been carried out by Schrodinger
and compared with experiment.

28

13. Atom in Interaction with Radiation

Following Jeans, black body radiation is mathematically

equivalent to a system of infinitely many oscillators. Maxwell's

equations for the free ether are

div fc = 0, curl < + I ^ -
;

c ot

div (8 = 0, curl - - - 0.
C ct

In order to simplify the relations, we assume that the walls of

the radiation cavity of volume V are reflecting ; then 6 is

perpendicular to the walls at the boundaries of the cavity.
Since the black body is at rest it is of no particular advantage
to carry through the calculation in a relativistically invariant

manner
;

we may therefore normalize the vector potential
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fi[ in such a way that the scalar potential vanishes. We then

()3l

have 6 = --- and the equations in the first row are satisfied

by ip
= c curl 91

;
the equations in the second row become

On the boundary 91 is normal to the walls. Let the characteristic

numbers and characteristic functions of the equations

A91 + ~
2
9I = 0, div 51 = 0,

with the boundary condition that $ is there normal, be denoted

by W a :>0, Ta
= 1,2,3,,,,

normalized in accordance with

On setting

where the coefficients q" depend on time but not on position, we
find for them the equations

Introducing
-~ = p* in addition to the q* t

this equation is

that for an oscillator with Hamiltonian function

we readily find on applying

6 = - Z/", b = cZf

that the energy of the radiation field is in fact given by

with this we have proved the theorem due to Jeans. For high

frequencies p there are approximately

(13.1)
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modes of oscillation in the frequency interval
/>, p -f dp.

21 We
are interested above all in the limiting case of an infinitely large

cavity ;
the spectrum then becomes continuous and our formula

for the density of frequencies becomes exact.

On quantizing this mechanical system of infinitely many
oscillators 28 in accordance with the theory of the oscillator

( 3)

and the process of composition (
10 but cf. remark on p. 109),

we find as possible quantum states s, each of which is characterized

by the fact that in it there is associated with each index a an

integer na ^ 0. In this quantum state

or, on choosing the additive constant in the energy in such a

way that the lowest energy value which the black body radiation

is capable of assuming is 0,

In the language of photons this means that when the cavity
is in the state s it contains n^ photons of each kind a. The
matrix element

vanishes unless all the equations

hold with the exception of n'a
= n^, which is to be replaced by

In the first case we have, by eq. (8.12),

fn ,
= ^

h
(
n* + *)

(Emission), (13.2)

and in the second
1

^ (Absorption). (13-2)

The first transition s -> s' consists in a photon of kind a springing
into being, the second in the disappearance of one such photon.
It follows from the above that in a transition for which q%9 , 4=

all other q%9 , must vanish.

Let an atom with fixed nucleus and electric dipole moment q
interact with the radiation field. Differentiate the quantum
states of the atom from one another by means of the index n
and denote the corresponding energies by h vn ;

then q
=

jl^nn'!!-
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A quantum state of the total system consisting of both atom
and radiation is characterized by the quantum numbers

The effect of the radiation on the atom is, in accordance with

eq. (12.4) of the preceding paragraph, given to a first approxima-
tion by the perturbation term

eW = (q).

It can be shown that the addition of such a term to the

Hamiltonian function of the total system will, according to

classical theory, not only indicate an influence exerted on the

atom by the radiation field, but will also modify the equations
of Maxwell in a way which indicates that the motion of the

electrons in the atom affects the radiation field. The per-
turbation term will accordingly call forth emission as well as

absorption. To a sufficient approximation we may take for 91

its value at the point occupied by the nucleus, provided we restrict

ourselves to radiation whose wave-length is large compared with

the dimensions of the atom. We now have

From this it follows than an element Wn9t n >
3 > can only differ

from if $ and s' are such that all n
ft

==
n^ with the exception

of a single one n'at which must equal na 1. Then only the

oc
th term contributes to the sum (13.3), and we have

eH'n...'.'="(C*U-tf.'. (13.4)

Bohr's frequency condition, which asserts that the emission or

absorption of a photon in state a with energy hpA is associated

with a quantum jump of the atom in which an amount

i h(vn yn >)
= hpn of energy is lost or won, need by no means

be satisfied here. The finite cavity has its own frequencies pa ,

and may therefore be in no position to take up the frequencies
associated with the quantum jumps of the atom. This is true

in principle, but as a matter of fact, as we shall see, Bohr's

frequency condition is fulfilled to a very close approximation in

the overwhelming majority of all transitions ; and this is more
and more the case the larger the cavity is.

Let the atom be in the state n and the radiation in the

state ^ {na }. We set

2:An.p.= V- U(p)dp, (13.5)

where the sum on the left is to be extended over those indices a
for which

/>a lies between p and p + dp ;
hence U(p}dp is the

energy density of the radiation contained in the frequency
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106 QUANTUM THEORY

range p, p 4~ dp. In accordance with (10.5), the probability
that the atom will find itself in the state ri after time / is given

by
2 1 - cos (vnn , + Pt ,,)t

The contribution to this sum due to the cases in which a photon
is emitted is, in accordance with equations (13.2), (13.4), given

by
2 1 - cos (v,,,

-
Pa)t . h(na + 1) I ,. ,,,, (13

.6
,

/*
2
ir (>w-,g 2 2^ IW-'*.)|, lo.)

and that for absorption by
2 1 - cos (vnn , + />.)< . An, , .

2
,.

Consider first the case in which the term level vn > is higher than

vn J ^nn' vn vn'
= ^ is then negative. We now collect

together all those terms a in the sum (13-6a)
for which pA lies

between p and p + dp. Since the position of the atom is not

exactly fixed even in consequence of the variations caused by
the emission of photons we may, for small wave-lengths,

replace 91^ by its mean value 47T/F as given by the normalizing

equation JSI^F
=

47r, and we may also assume that all

directions are equally probable for 9la . The square |(3tq)|
2 of

the scalar product of 91 with a fixed vector q has then the mean

value ^p |q|
2

. (13. 6a)
then becomes

1 cos (p v}t JTT |q ny,,

2

(p
-

v}* 3 V 2p
2

On introducing (13.5) the sum (13. 6a ) may, to a good approxima-
tion, be replaced by the integral

477 (U,|
2

f 1 - COS (p
-

v)l U(p)dp(U,|
2

f 1

A 2
J3 A 2

(p
-

r)
2

P
2

'

Essentially the only elements which contribute to the value of

this integral, for a time / large in comparison with the duration l/v

of an oscillation, are those for which p lies near to v. On developing

in powers of p v, the first term in the expansion contributes
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ATOM IN INTERACTION WITH RADIATION 107

to the integral ;
all others are to be neglected. Similarly the

entire amount (13.6e )
due to emission is negligible, for its de-

nominator (p + v)
2 vanishes nowhere. This means that the

transition is almost invariably associated with the absorption of

a photon whose frequency lies very close to v. The probability
that the atom will appear in the higher state ri after lapse of

time t increases in proportion with t
;

the factor

4rr
2 UM

is the probability that the transition n -> ri take place in unit time.

This formula was obtained for the case in which the state

ri possessed a higher energy level than n. In the reverse case

only the sum (13. 6e )
due to emissions contributes an appreciable

amount. We now put vnn > = vn vn > = v and obtain the same
formula with this difference : in place of na we now have nA + 1,

or in place of the sum (13.5) the sum

The first is V U(p)dp, and we denote the second by V u(p)dp.
This latter is equal to (hp) times the number of modes of vibra-

tion of the cavity within the frequency interval p, p + dp ;
hence

by (13.1)

V it(P)dp
- V

7T
2
C
3 ''

The probability that the atom drop from state n into the lower state

n' in unit time is given by

The additional term u(v) is characteristic for spontaneous
emission. When the radiation is not enclosed in a black

body, i.e. when there is no radiation density U(v), the proba-

bility that the atom drop from the state n to the lower state ri

in unit time, emitting thereby a photon whose frequency lies

in the immediate neighbourhood of v ^ v n
-

*v, is

This agrees with the formula obtained by integrating (8.11)

over all directions. The probability that the atom jump from
the level n into a higher level ri (v n

> > v n )
under these same

conditions is zero.
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108 QUANTUM THEORY
In the energy field of the black body radiation we find not

only absorption, but also
"
stimulated emission," both of which

are proportional to the energy density U(v). On setting

47T2

(13.8)

the probability for a jump from state n to a higher state n' in

unit time is

(
V = vn , Vn ), (13.9)

and the probability for the inverse jump, the drop from n'

to n, is

(13.9)

Since
||qnn '||

is an Hermitian matrix,

(13.10)

If there are a number of atoms in the radiation field and the

whole system is in a steady state, then on the average as many
atoms must make the jump n -> n' in unit time as make the

inverse jump n' -> n. On denoting the number of atoms in

the state n by Nn ,
these considerations are expressed in the

condition

or

= A n ,n

!L =1
Nn>

N n .[U(v) + u(v)}

(13.11)

The probability coefficients A nn > = A n , n have entirely dis-

appeared or rather, almost entirely, for the equation is valid

only under the assumption that A nn ,

=f= or qnn ,
={= 0, i.e.

the transition n^tn' is not to be forbidden by the selection

rules. But for such a system in thermal equilibrium N n must,
as shown by Bollzmann, be proportional to

where is the temperature and k the Boltzmann constant.

Equation (13.11) then becomes

or the Planck radiation formula :

U(v)
= TT^ ;

C I
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ATOM IN INTERACTION WITH RADIATION 109

this formula is valid for all frequencies v whose energies can be

exchanged by the absorbing and emitting atoms in accordance
with Bohr's frequency condition. 29

We have thus finally returned to the historical origin of the

quantum theory. We must now add three remarks concerning
this treatment, due to Dirac, of energy exchange between matter
and radiation. In the first place, it is able to explain the fact

that the spectral lines are not sharp, but possess a natural breadth.

Secondly, we must inquire what causes this difference between

absorption and emission, processes which are transformed into

each other on changing the direction of time. Indeed, the

fundamental mechanical and field laws are invariant under the

transformation /->-/! The answer is that this difference is

due to the preferential direction in time involved in the application

of the theory of probability ; we assume a fixed initial state and

calculate, with the aid of transition probabilities, the distribu-

tion over the various states at a later time, not the distribution

which would result from the equations for an earlier time. If

no assumption is made concerning this preferential direction,

t should be replaced by \t\
in (13-7). And finally, the fact that

we have here treated Maxwell's equations as classical equations
of motion, and as such have subjected them to the process of

quantization, may give rise to serious doubts for in our general
formulation Maxwell's equations are already the quantum-
theoretic wave equations for the photon ! But we shall see

in Chap. IV, 11, that this method is in fact the correct one

to employ in order to go from one corpuscle to an indefinite

number of corpuscles. For since the number of photons must
remain indefinite -as a photon can, in contrast to an electron,

spring into being or disappear the method of composition
described in 10 is not applicable to them.

Pure Mathematical Physics



CHAPTER III

GROUPS AND THEIR REPRESENTATIONS

1. Transformation Groups

THE
concept of a group, one of the oldest and most

profound of mathematical concepts, was obtained by
abstraction from that of a group of transformations.

1

A point-field, a domain of elements which we call points,
on which the transformations operate, underlies the trans-

formations. This point-field may be either the totality of a

finite number of individually exhibited elements or an infinite

set, in particular a continuum such as space or time. A
mapping or correspondence S of the point-field on itself is

determined by a law which associates with each point p of the

field a point p
f

as image : p > p' = Sp ;
two correspondences

Sp and Tp are identical if for all points p the two image
points Sp and Tp coincide. If the point-field contains a finite

number of elements the correspondence S can be defined by
giving explicitly the image point for each point p ;

for infinite

sets, however, the association is only possible by giving the

law of the function S.

Among such correspondences there is a particular one which
associates with each point p the point p itself : p -> p ;

it is

called the identity I. Two correspondences can be applied

successively : if the first sends the arbitrary point p into p'
= Sp,

the second p' into p" = Tp' ,
then the correspondence resulting

from the composition of the two is defined by the association

p -> p" == T(Sp] and is denoted by TS (read from right to left
!).

The resultant correspondence depends on the order of the two
factors 5 and T. In order that composition be possible it is

essential that the correspondences are ones which map the

point-field on itself, and not on another point-field.
We shall restrict ourselves to one-to-one correspondences S :

the image points p' = Sp associated with p shall always be

distinct, and each given point p' shall appear as the image of

one (and only one) of the points p. Consequently such a one-to-

110

Pure Mathematical Physics



TRANSFORMATION GROUPS 111

one correspondence S : p -> p' determines a second, the inverse

S~ l
: p' -> p of 5, which just cancels it :

S'(Sp)=p, S(S'p'}=p' or

S~ 1S^ /, SS~ 1 - /.

The inverse of S~ l
is again 5 and the identity / is its own inverse.

The resultant TS of two one-to-one correspondences 5, T is

itself one-to-one, and its inverse is (TS}'
1 S~ l T~~ l for

on inverting the correspondences ->/>'-> p" there results

p" --> p' -> p. Henceforth we shall consider only those corre-

spondences, also called transformations or substitutions, which
are one-to-one. In this domain we have, in accordance with

what has been said, the two fundamental operations of inversion

and composition.

Examples. 1. Let the point-field consist of n elements

exhibited individually ; bring them into a particular order by
numbering them with the integers

1, 2, -,
n. (1.1)

This numbering consists in a one-to-one reciprocal relation

between the elements of the point-field and the integers or

possible
"
positions

"
q in the series (1.1). A permutation con-

sists in the transition from one such arrangement to another.

If we wish to operate in space we may think of the positions as

fixed compartments into which the movable elements can be

laid, or, conversely, we may think of the elements as fixed and
shift the movable numbers about. With each permutation is

associated a one-to-one correspondence p ->
/>'

which tells

which element p' occupies, after the exchange, the position

previously held by p. Insofar as the method of numbering is

considered as left to convention, the permutation is nothing
more than this one-to-one correspondence. The concept is to

be understood in this way when we are concerned with the

composition or successive application of permutations.
2. A kinematical example of a group is offered by the motions

of a space-filling substance, in particular those of a rigid body.
The positions or numbers of the preceding example are here

represented by the material points and the point-field is the

space itself. The one-to-one correspondence p ->
/>' connects

the initial with the final state : that material point which origin-

ally covered the spatial point p is taken to the point p
f

by the

motion. Congruent correspondences of space on to itself will

also be briefly referred to as
"
motions

"
in the geometrical

sense.

The concept of a group of transformations is now readily
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112 GROUPS AND THEIR REPRESENTATIONS

formulated. We understand by it any system of transforma-

tions of a given point-field, which is closed in the sense of the

following conditions :

1. It contains the identity ;

2. If 5 belongs to
,
then its inverse S~ l does also

;

3. The resultant TS of any two transformations S, T of

is also a transformation of @.

As examples we name the group of all n I permutations of n

things, the congruent mappings or
"

motions
"

of 3-dimensional

Euclidean space, all homogeneous linear transformations in

n variables with non-vanishing determinants (affine correspond-
ence of an n-dimensional vector space) and the group of unitary
transformations in n dimensions.

If the point p goes over into p' by means of a transformation

of the group ,
then p' is said to be equivalent to p (with respect

to the group ).
The same concept is applied when we are

considering instead of a point p a figure consisting of points.

Expressed in these terms, the three requirements for a group
are nothing other than the three axioms of equality :

1. p is equivalent to p ;

2. If p' is equivalent to
/?,

then p is equivalent to p' ;

3. If p
f

is equivalent to p and p" to />',
then p" is equivalent

to
/>.

According to Klein's Erlanger Program
2
any geometry of

a point-field is based on a particular transformation group &
of the field

; figures which are equivalent with respect to QJ,

and which can therefore be carried into one another by a trans-

formation of
,
are to be considered as the same. In Euclidean

geometry this role is played by the group of congruency trans-

formations, consisting of the motions referred to above, and
in affine geometry by the group of affine transformations, etc.

The group expresses the specific isotropy or homogeneity of the

space ;
it consists of all one-to-one

"
isomorphic correspondences

"

of the space on itself, i.e. those transformations which leave

undisturbed all objective relations between points of the space
which can be expressed geometrically. The symmetry of a

particular figure in such a space is described by a sub-group of

consisting of all transformations of which carry the figure
over into itself. The art of ornamental tiling, which was per-
fected by the Egyptians, contains implicitly considerable know-

ledge of a group-theoretic nature
;
we here find, perhaps, the

oldest fragment of mathematics in human culture. But only

recently have we been able to formulate clearly the formal

principles of this art
; attempts in this direction were already

made by Leonardo da Vinci, who sought to give a general and
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ABSTRACT GROUPS AND THEIR REALIZATION 113

systematic account of the various types of symmetry possible
in a building. But the most wonderful symmetrical structures

are exhibited in crystals, the symmetry of which is described

by those congruency transformations of Euclidean space which

bring the atomic lattices of the crystal into coincidence with

themselves. The most important application of group theory
to natural science heretofore has been in this field.

The following considerations fit naturally into the present
discussion. Let the point-field M on which the transformations

S of the group & operate.be mapped on the point-field N by
means of the one-to-one correspondence A : p -> q ;

the case

in which the correspondence serves to introduce new numbering
or new co-ordinates is of particular importance. Through this

correspondence A of M on N the transformation S of M becomes
a transformation T of N

;
in the particular case mentioned above

T is simply a description of the transformation S in the new
co-ordinates. It is evident that to the composition of trans-

formations S corresponds the composition of the corresponding
transformations T of N and that a group @J of transformations S
goes over into a group ^) of transformations T. The relation

between these two transformations is

T - ASA' 1

, (1.2)

for if we denote the transformation S by />->/>' and if q, q[ are

the points of N associated with />, p' by A, then the transforma-

tion q -> q of N is effected by

We may also write $)
= A&A~ l

. In particular, these considera-

tions apply when N and M are the same point-field.

2. Abstract Groups and their Realization

An arbitrary number of transformations of a given point-field
on to itself can be applied successively ;

we are of course not

restricted to merely two. But when we perform this process

step by step it is automatically reduced to a succession of com-

positions of transformations taken two at a time :

ABC = A[B(C )]

This possibility of performing an extended composition in steps

involving but two transformations at a time shows that the

associative law

(AB)C - A(BC)

holds for any three transformations A, B, C.
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The structure of a transformation group is obtained from it

by abstraction when we allow the transformations themselves

to degenerate into elements of an immaterial nature, retaining

only their individuality and the rules in accordance with which

two given transformations are composed, in a given order, to

form a third. In accordance with what has been said such

composition necessarily obeys the associative law. Perhaps it

also obeys other universal laws, but since we have at present
no indication of this we attempt a formulation of the abstract

structure of the group by means of the following definitions :

An abstract group is a system of elements within which a law

of composition is given such that by means of it there arises from
any two (the same or different] elements a, b of the group, taken in

this order, an element ba. The following conditions shall thereby
be satisfied :

1. The associative law c(ba) (cb}a ;

2. There shall exist an element I, the unit element, which leaves

an arbitrary element a unaltered on composition with it :

la = al = a.

3. To each element a shall exist an inverse a~ l which yields on

composition with it the unit element I :

a^r 1 a~ la I.

Such an abstract group is not to be confused with its reali-

zation by transformations, i.e. by one-to-one correspondences of

a given point-field. A realization consists in associating with

each element a of the abstract group a transformation T(a) of the

point-field in such a way that to the composition of elements of
the group corresponds composition of the associated transforma-
tions :

T(ba) - T(b)T(a). (2.1)

It follows from this that to the unit element I corresponds the

identity / and to inverse elements a, a" 1
correspond inverse

transformations :

7>-i) = r-t(a). (2.2)

The first assertion follows from the particular case

7r(l) = T(a)

of (2.1) by left-handed composition with the reciprocal of the

transformation T(a) ; (2.2) is then contained in (2.1) as the

particular case b = a" 1
. The realization is said to be faithful

when to distinct elements of the group correspond distinct

transformations :

T(a) =4= T(b) when a 4= b.
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In accordance with the fundamental equation (2.1) the necessary
and sufficient condition for "faithfulness" is that T(a] shall be

the identity only if a is the unit element. For if a, b are two
elements of the group it then follows from T(a) = T(b} }

i.e.

T(a)T-
l

(b)
= T(a)T(b~

l

)
- T(ab~

l
)
- /

that under these conditions ab~ l =
I, i.e. a = b. If the abstract

group is obtained from a transformation group & by abstraction,
then conversely & is a faithful realization of it.

In the study of transformation groups we always deal with

two manifolds, the structureless point-field and the manifold of

group elements, the structure of which is expressed by the law
of composition. The original problem thus resolves itself into

two
;

the examination of the various group structures possible
and the examination of the possibility of obtaining realizations

of the given abstract group by transformations of a given point-
field. The historical development of the subject has shown that

it is advantageous to effect this division into two problems ;

they are of fundamentally different character and require

fundamentally different mathematical equipment for their

discussion.

In accordance with our method of introducing the abstract

group, which we henceforth refer to simply as the group, it

serves merely to give the structure of the group ;
the nature of

its elements is immaterial. This abstraction from the nature

of the elements is expressed mathematically by the concept of

isomorphism. If we have two groups g, g' and there is as-

sociated with each element a of g an element a' of g' in a one-

to-one way : a ^ a', such that

(bay - Va\ (2.3)

then the two groups are said to be simply isomorphic. Simply
isomorphic abstract groups offer no means of distinguishing one

from the other. The concept of isomorphism can, of course, be

applied to transformation groups. Two isomorphic transforma-

tion groups can be considered as faithful representations of

one and the same abstract group. A group may be isomorphic
with itself

;
it is then said to be automorphic. Such an auto-

morphism occurs when g and g' coincide, i.e. when a one-to-one

reciprocal association a ^t a! satisfying the condition (2.3) is

established between the elements of the group g.

The question arises whether or not every abstract group

possesses a faithful realization. If this were not the case the

concept of an abstract group as developed above would be too

broad there would exist, in addition to the associative law,
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other purely formal laws for the composition of transformations

which are satisfied by every transformation group. Conversely,
a proof of the readability of any abstract group would tell us

that all that can be said about the formal laws for the com-

position of transformations is contained in our conditions (1)

to (3). We can, in fact, construct a faithful realization of any
abstract group g by taking as the point-field the group manifold

itself and letting correspond to each element a of the group
the transformation

s -> s' as

of the group manifold on to itself. This
"

left- translation
"

ta is obviously a one-to-one reciprocal transformation which

has as inverse the transformation s = a~ l
s'. If a and b are

distinct elements the corresponding transformations ta , t6 are

distinct, for they allow the unit element I to correspond to the

distinct elements a, b respectively. If we perform in succession

two left-translations

5- _> s' = as, s' ~> s" = bs'

the resulting transformation is, in consequence of the associative

law,
s -> s" = b(as)

=
(ba)s.

Consequently the left-translations constitute in fact a faithful

realization of the abstract group. However, the right-trans-

lations behave otherwise, for if we denote the mapping
s -> s' = sa of the group manifold on itself by t*(a), we find

instead of (2.1) the equation

3. Sub-groups and Conjugate Classes

A sub-group g' of a given abstract group Q is a set of elements

contained in g which itself fulfils the characteristic group con-

ditions : the unit element I belongs to g', with a belongs also

a" 1 and with a, b also ba. These three conditions can be reduced

to the one : if a, b are any two elements of g', then ba~ l also

belongs to g'. We assume, of course, that the partial system
consists not merely of the element I, but the other limiting

case, in which g' coincides with g, shall be included under the

concept of a sub-group.

Examples are readily found. In the group of Euclidean

motions are contained, for example, the group of rotations

(which leaves one point, the centre, fixed) and the group of

translations. The unitary transformations constitute a sub-
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group of the complete group of all homogeneous linear transforma-

tions
;

the even permutations a sub-group of the group of all

permutations. If we are dealing with a transformation group
,

all those transformations of which leave a particular

point p fixed (i.e. which carry p over into itself) constitute a

sub-group p. Instead of a point p the fixed element may be

any figure composed of points ;
the transformations of the sub-

group must either leave the figure as a whole fixed (i.e. they must

carry each point of the figure over into another such) or the

more restrictive condition that they leave each point of the

figure fixed. We can also obtain sub-groups of & by employing
invariant functions instead of invariant figures. If

ifi(p) is any
function of position on the point-field with elements p we as-

sociate with the transformation 5 : p ~> p' the function 0'
defined by *l>'(p'} *f*(p) and say that it is obtained from

ijj by
the transformation S. If p' Sp, p" Tp'',

the equations

show that the composition of the transitions
iff

-> $' and

i(t'
->

iff"
associated with 5 and T result in the transition

if*
-> ^"

associated with TS. Now consider all transformations 5 of

which carry 0(/>) over into itself, i.e. for which $(Sp) = $(p) is

an identity in p ; they constitute a sub-group !Q of
,
and

tft(p) is an invariant of . In this way we can separate out

the rotations from the homogeneous linear transformations by
requiring the invariance of the unit quadratic form. The sub-

groups contained in a finite group Q, which is described by
exhibiting each of its elements and giving explicitly the result

of composition of each two, can be obtained by inspection.
There is associated with each element a of the group Q a

cyclic sub-group denoted by (a) :

-,a-, a~\ a" -I, a, a\ ; (3.1)

the elements an of which arc defined inductively by the equations

a =
I, an+l = an

a.

These elements constitute in fact a group, for n and m being

any integral exponents we have

(a) is the smallest sub-group which contains a, i.e. its elements

are common to all sub-groups of g which contain a. The
elements of the set (3.1) can either be distinct or and this

latter must be the case if Q is a finite group they must repeat
themselves after a cycle of h terms : I, a, a2

, ,
ah ~~ l are

distinct but ah = I. h is called the order of the element a.
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The order of a finite group is the number of its elements
;

accordingly, the order of an element a agrees with the order of

the cyclic sub-group (a) generated by a. A group is said to be

commutative or Abelian if composition of its elements obeys
the rule ba = ab. Cyclic groups are therefore Abelian.

If a runs through the sub-group t) of g the associated (left-)

translations ta constitute a group of transformations which is

simply isomorphic with
{),

the point-field of which is the group
manifold. We say that two elements 5, s

f

which are equivalent
with respect to this transformation group are (left-)equivalent
with respect to

I) and express this situation by the notation
11
s

r

== s with respect to
f)

"
;

the condition for it is that s' = as

where a is an element of
1).

In this way the elements of g are

divided into sets of elements which are equivalent to
I).

If

the number of such sets is finite, it is called the Index of
I)

in g.

If g is a finite group the number of elements in each of these

sets is given by the order of
I),

for different translations trt send

s into different elements : as 4= bs if a =^ b. The order of f)
is

accordingly a divisor of the order of g, and the quotient of these two

is the index of f).

The considerations at the end of 2 above, which were

developed for groups of transformations, suggest a second

realization of the abstract group g. We associate with the

element a the correspondence

s _> 5
' = asa~ l

(3.2)

of the group manifold on itself. This correspondence, which

we call the
"
conjugation

"
!rt ,

is reciprocal one-to-one, and has

as inverse s= a~ l s'a. The law of composition is obeyed, for

from
s

r

-> s" - bs'b~ l

we obtain the product

s" = basa~ l b * =
(ba)s(ba)~

l
.

Two elements s, s' of g arc said to be conjugate if they are

equivalent with respect to the group of all conjugations. Ac-

cordingly, the whole group is divided into classes, any element

of one of which is conjugate to any other element of the same
class. When we speak of classes within a group without a

more explicit description we mean these conjugate classes.

The realization of g by the group of conjugations is in general
a
"
contracted

"
rather than a faithful realization. In particular,

the conjugation Ia coincides with the identity if a commutes
with all elements ^ of the group. The totality of all such ele-

ments a is called the central of the group ;
it is obviously
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an Abelian sub-group of g. But this disadvantage of con-

jugation over translation is offset by an advantage ; conjugation
is an isomorphic correspondence within the group itself which
leaves the unit element invariant and which associates with

each sub-group I)
of g another such, the conjugate sub-group

alja""
1

. These facts, which are expressed by the equation

a(st)a-
1 = (asa-

l
)(ata~

l
),

were already contained implicitly in the considerations at the

end of 1.
I)

is said to be a self~conjugate or invariant

sub-group if it coincides with all its conjugate sub-groups.
The importance of this last concept is best seen in the

following :

Theorem. If ^ is an invariant sub-group and = denotes equiva-
lence with respect to i/, then it follows from

s' = s,l' = t that s't'

'

= st. (3.3)

To prove this we note that s' as, t
r = bt (a, b in

t)) yield

s't' = asbt = (ac) (st). (3.4)

for c = sbs~ l

belongs to
t)
with b. Since ac lies in

f) our assertion

is proven. It is readily seen that the invariantive nature of
fy

is

necessary as well as sufficient for the validity of (3.3). In deal-

ing with an invariant sub-group f)
we need not distinguish

between right and left equivalence with respect to
t) indeed,

the above proof was based on this fact.

We may, if we like, consider equivalent elements as not

differing from one another (by application of the principle of

definition by abstraction) ;
but by thus allowing equivalent

elements to fall together the group property of g is, in general,
forfeited. In accordance with the above theorem it still remains,

however, if
fy

is an invariant sub-group. The group obtained

from g by identifying all elements which are equivalent with

respect to
1)

is called the factor group g / f) ;
its order is the

index of the invariant sub-group t)
of g.

These concepts are of assistance in examining the way in

which a group may be
"
contracted

" on setting up a realization.

Let the transformation T(a) of a given point-field on itself

correspond to the element a of the abstract group g in the realiza-

tion under consideration. Then T(a) = T(a'} if and only if a'

is obtained from a by composition with an element e (i.e. a' = ea)

for which T(e) is the identity. Such elements e obviously con-

stitute a sub-group I)
of g, for it follows from

T(e)
-

/, T(e')
= I that T(ee')

=
T(e)T(e')

- /.
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I) is, in fact, an invariant sub-group, for if T(e) is the identity,
the same is true of

T(aea~
l
)
- T(a}T(e)T^(a) = T(a)T~

l

(a).

In any realization of an abstract group g by a group of transforma-
tions the elements of a certain invariant sub-group I) 0/g correspond
to the identical transformation ; two different elements will be

associated with the same transformation if and only if they are

equivalent with respect to f). The group of transformations is

consequently a faithful realization of the factor group g/f).

4. Representation of Groups by Linear
Transformations

On requiring that the transformations which are to serve

as a realization of a given abstract group g be linear and homo-

geneous we arrive at a problem which is most fruitful from the

mathematical standpoint and which is at the same time of

greatest importance for quantum mechanics
;
we then speak of

a representation, instead of a realization, of the group.
3 An

n-dimensional representation of g, or a representation of degree n,

consists in associating with eacli element s of the group an
affine transformation U(s) of the n-dimensional vector space
3ft = 9ftn in such a way that these transformations obey the

law of composition

V(s)U(t)--= U(st). (4.1)

We then say that s induces the transformation U(s) in the

representation space 9ft. On choosing a definite co-ordinate

system in 9ft each transformation U(s) is represented by a square
matrix of n rows and columns, the determinant of which does

not vanish. On replacing the original co-ordinate system by
another, obtained from it by the transformation A, the corre-

spondence which was formerly represented by the matrix U(s)
is now represented by the matrix AU(s)A~

l
. Consequently if

the association s -> U(s) is a representation, the association

s-+AU(s)A~
l

is obviously also one
;

this latter representation is said to be

equivalent to the former. They are essentially the same,

differing only in the choice of the co-ordinate system in terms
of which they are described.

Examples. A representation in one dimension consists in

assigning to each element s of the group a non-vanishing number

x(s) in such a way that

XW =
X(*) X(0- (4.2)
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In particular, x(l)
= 1- A most trivial 1-dimensional repre-

sentation is obtained by assigning to each s the number 1 :

x(s)
= 1. This special case is called the identical representation.
Consider next the so-called symmetric group, the group

TT =
77y

of all /! permutations of/ things. The association

*-,= 1,

according as 5 is an .even or an odd permutation, defines a

1-dimensional representation, the
"
alternating

"
representation

of the group TT. For the character 8, which distinguishes
between the even and the odd permutations, satisfies the

equation

8,t 8* 8|.

Let g be a finite cyclical group of order h
;

the elements

s are then

I, a, a*, -, a"" 1

and a^ ~ I. Consider the 1-dimensional representation s -> x(s)

in which x(a )
~

- The condition (4.2) for a representation
then tells us that to the elements s of this series correspond

i e 2 . . . A-i
1

?
fc

>
fc

) >
fc

j

and that to ah
corresponds e\ Hence A = 1

;
e must therefore

be an /i
th root of unity and the law defining the representation

is a r -> e r

(r 0, 1, 2, ). Conversely, when e is an arbitrary
A th root of unity this association defines a 1-dimensional re-

presentation of g. We have thus obtained a complete survey
of all possible 1-dimensional representations of a cyclical group.

The only example of a multi-dimensional representation
which we offer at this time is the following trivial one. If

is itself a group of linear transformations of an w-dimensional

vector space SR, then the association s -> s defines an n-dimensional

representation of g. This example implies more than one might
at first sight imagine. We have in fact to do the following :

we first obtain the structure of the group g by abstraction from
the group of linear transformations and then return to the

original realization by means of the correspondence s -> s

between an clement 5 of the abstract group on the one hand
and the linear transformation s on the other.

The concept of equivalence has a more general significance
than that discussed above. It may refer to an arbitrary system
S of linear correspondences U of the n-dimensional vector

space JR. We need not assume that these correspondences

possess an inverse (i.e. that they have a non-vanishing deter-

minant), nor need we assume that they are associated with
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the elements s of a group, as is the case with representations.
On expressing the set of correspondences U in terms of a new
co-ordinate system each matrix U goes over into the matrix

U' = AUA~~ l
;

the system Z is transformed into the equivalent

system Z" consisting of the /'. A is here a fixed non-singular
matrix.

Consider a correspondence U of 91 on to itself. A linear

sub-space 9T of 9t is said to be invariant under U if the vectors

of 91' are transformed into vectors of 91' by U. If 9V is invariant

then the space 91 (mod. 91') obtained by projecting 91 with

respect to 9T is also invariant (cf. I, 2, in particular Fig. 1).

9t' being invariant, U gives rise to a correspondence U' of SR'

on to itself
;
we say that U induces U' in 91'. Similarly for

the space obtained by projection. We now pass from a single

correspondence U to a system E of correspondences. 91' is

said to be invariant under 2 if it is invariant under each corre-

spondence U of Z1

. Describing 9i in terms of a co-ordinate

system which is adapted to the invariant sub-space 91', all

matrices U of the system Z reduce simultaneously to the form

illustrated in Fig. 1, p. 8. 2 is called Irreducible if 9t con-

tains no sub-space, other than 9t itself and the space consisting

only of the vector 0, which is invariant under . We shall

have occasion to reduce 9i in such a way that each constituent

separated off is irreducible under a given system 2. This

requires the construction of a series of sub-spaces

0, Wlf SI* , 3tr = , (4-3)

beginning with and ending with 9?, in which each member
is contained in the preceding one and is such that 9t, (mod. 9t t _i)

is irreducible. Naturally 9t t
shall actually be larger than 9t t ^!,

not merely coincide with it. The implications of this reduction

are most readily seen in terms of the matrices U of the corre-

spondences of the system Z1

on adapting the co-ordinate system
to the

u
composition series

M
(4.3), i.e. by choosing first a co-

ordinate system in 9t t ,
then supplementing it with additional

fundamental vectors in order to obtain a co-ordinate system
for $2, 9t3 ,

in turn.

27 is said to be completely reducible if 9t can be decomposed
into two sub-spaces 9t + 9T, each of which are invariant under
and such that neither of them consists merely of the vector 0.

This concept of complete reducibility is more exacting than that

of mere reducibility. On describing 91 in terms of a co-ordinate

system which is adapted to this decomposition, each matrix

U of 2 assumes the form illustrated in Fig. 2, p. 9. We are

then faced with the problem of decomposing 9R (or E] into
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constituents, none of which is completely reducible, i.e. of

decomposing $ g^ -f + $R fc
into invariant sub-spaces,

none of which is completely reducible.

We often find that reducibility implies complete reducibility,
i.e. that in many cases we have the theorem : If 9T is an in-

variant sub-space of 3t, a second invariant sub-space 31" can
be found such that JH is completely reducible (with respect to

Z) into SR' + 31". We shall soon see that this is actually the

case when 5R is a unitary space and S is a system of unitary
transformations.

It was shown in Chap. I, 3, that if the system E is re-

ducible, then the system Z1*
of

<l

transposed
"

correspondences
of the dual space on itself is also reducible. If : 5 -> U(s)
is an ^-dimensional representation of the group g the transposed

U*(s) do not constitute a representation ;
it is readily seen,

however, that on employing instead the contragredient corre-

spondences

U(s) = [l/'(5)]-

w
we do obtain a representation s ~> U(s] of the dual vector space.w
This we call the contragredient representation .

5. Formal Processes. Clebsch-Gordan Series

Continuous groups offer what are perhaps the simplest

examples of the theory of representations. We consider in

particular the group C C n of all linear and homogeneous trans-

formations s in n variables #,, x
2j ,

xn with non-vanishing
determinants

;
we consider each set of values #, as a vector

in an n-dimensional vector space t *= t n . The classical theory
of invariants, first developed in England about the middle of

the last century, concerned itself in particular with the repre-

sentations of C induced on the coefficients of arbitrary forms

in the variables #,. A quadratic form in these variables is a

linear combination of the n(n + l)/2 linearly independent

products Xi xk ;
under the influence of a linear transformation

s of the Xi these products undergo a linear transformation [s] 2 ,

and the correspondence s ~>
[s] 2 is obviously a representation

[c]
2 in n(n + l)/2 dimensions of the group C. The transformation

s of the variables A^ sends the arbitrary quadratic form

E&H: *i *k

into a quadratic form
- / / f

Ia tt *,- xk
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in the new variables, where the coefficients aik are obtained

from the a ik by a certain linear transformation s2 associated with

s\ s2 is obviously contragredient to [s] 2 . The quadratic form

characterized by a fixed set of n(n + l)/2 coefficients aik may
therefore be considered as a vector in a space of this number of

dimensions, and the transformation s of the variables x
i induces

the transformation s2 in this space. The space thus defined by
the totality of n-ary quadratic forms is thus the point-field for

a group of linear homogeneous transformations which constitute

a representation of the group C.

We may in the same way deal with cubic, quartic, ,

/ic forms. The totality of monomials of order / are contained

in the formula

where the/^ are non-negative integers whose sum
/ 4. / 4- . . . 4- f f71I./2I I ./ n J

They constitute the substratum of a representation [c]/ in

_ n(n+ ]) -(n +/- 1)

i *> . . . f'u i

dimensions.

But we can exhibit representations of C which are formally

yet simpler than these arising from the theory of forms. Let

(# t-)
and (y t )

be two arbitrary vectors in our n-dimensional

space t and consider the products x
t y k . On subjecting the X*

and the y { to the same transformation s of C (transition to a

new co-ordinate system) the n2
products undergo a certain

linear transformation s X s associated with 5 and the corre-

spondence 5 -> 5 X s is an n2-dimensional representation (c)
2 of C.

Now a system of numbers F(i, k}, depending on two indices i
}
k

which run through the values 1, 2, , n, is said to be a tensor

of second order if under the influence of a transformation s of

t the F(i, k) undergo the same transformation as the products
x

\ Vk f the components of two arbitrary vectors J, t) of t. Hence
the tensors of order 2 are the substratum of the representation

(c)
2 of C. (c)

2 contains the representation [c]
2 which is induced

in the sub-space of symmetric tensors of order 2
;

the tensor

with components F(i, k} being symmetric if F(ik) = F(ki).
In geometry the anti-symmetric tensors, i.e. tensors whose

components satisfy the condition F(ik) = F(ki), play a more

important role than the symmetric ones.* In particular, two

arbitrary vectors (#,), (y t )
define a surface element with

components

x{ik] x iyh xky i ;
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of these quantities but n(n l)/2 are linearly independent,

say those for which i < k. On subjecting the components #
t

of the vector and the components 3',-
of the vector t) to the

same linear transformation s, the components of the surface

element defined by them undergo an n(n l)/2-dimensional
linear transformation (s}2 . s ->

{s} 2 is a representation {c}
2

whose substratum is the totality of anti-symmetric tensors of

order 2. Hence the representation (c)
2 is reduced into the

representations [c]
2 and {c}

2
,
for any tensor F(ik) can obviously

be written

F(ik)
=

~[F(ik) + F(ki)] + -z[F(ik} F(ki)] 1

i.e. in a unique manner as the sum of its symmetric and anti-

symmetric parts. That this reduction is correct is further borne

out by the fact that the dimensionalities satisfy

9 nln + 1) , n(n
/ ^ *

i
vn'= v ' ' +

Similarly three arbitrary vectors j, ty, j determine a 3-dimen-

sional element of volume with components

x k x
l

y* yi (5.2)

zk

These elements constitute the substratum of a representation

{c}
3 in

n(n
-

l)(n
~

2)

1-2-3

dimensions. Continuing in this way we can construct 4-,

5-, ,
n-dimensional elements

;
this process must cease with

w-rowed determinants, for a determinant of the form (5.2) with

more than n rows must necessarily vanish identically.
We shall see that the representations of C whose substrata

are the symmetric and anti-symmetric tensors of order / are

irreducible, and shall in fact solve the general problem of effect-

ing the complete reductions of
(c)-f,

the representation induced

by C in the space of all tensors of order /, into its irreducible

constituents (Chap. V).
The tensor concept really depends on the X -multiplication

introduced in II, 10. If the m variables x { undergo a trans-

formation A and the n variables yk a transformation $, then

the mn products x ty k undergo a transformation A X B. Con-

sidering the xi as the components of an arbitrary vector j in

an m-dimensional space 9tm and the yk as the components of
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t) in SRn ,
the products #, yk may be considered as the components

of a vector j X t)
in an ran-dimensional vector space Rm X 3Jn .

Hence two representations

<p:5->t/(s), &':*->/'(*) (5.3)

of g in m, n-dimensions, respectively, give rise to a new wn-
dimensional representation which we denote by X '

:

X ':*-> /(*) X U'(s). (5.4)

This presents a general method of obtaining a new representa-
tion $> X '

from two given representations ,
'.

Denoting the representation s -> s of the linear group c for

the moment by (c),
the representations of c whose substrata

are the tensors of order 2, 3, are then (c) X (c) (c)
2

,

(C) X (C) X (C)
=

(C)
3

,
-.

We should, perhaps, have discussed the addition + of two

representations before discussing their multiplication X . Con-

sider the variables x
f
and yk as the components of a single vector

5 in an (m + w) -dimensional vector space ;
when the x< are

subjected to the transformation A and the yk to the trans-

formation B these m + n variables undergo a certain trans-

formation (A, B). Hence we obtain from (5.3) the representation

in m -f- n dimensions. The inverse of this process is complete
reduction, as discussed above : jp + '

is completely reducible

into the components and '.

Another important formal method is the following : Any
representation F in Af-dimensions of the linear group c n in

w-dimensions may be used to construct an A^-dimensional

representation of any abstract group g from an 7z-dimensional

representation of the same. F associates with the linear

transformation u in n-dimensional space a linear transformation

U in A7

dimensions, so if : 5 -> u is an w-dimensional repre-
sentation of the group g with elements s, then

5 -> u -> U

is an N-dimensional representation s -> U of g which we may
denote by F($g). To this is due the importance of the repre-
sentations of the linear group for the general theory of repre-
sentations. For example, take F to be the representation of

C whose substratum is the dual space, the space of all tensors

of order 2, of the symmetric or anti-symmetric tensors of order 2,

etc.
;
we then obtain from the representation of the abstract

w
group g the representation &, X

, [
X &], {$) X

},
etc.
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The three most important formal processes are (1) addition,

(2) x -multiplication, and (3) the F process. The first two

generate a new representation from one or two given repre-

sentations, the third a new one from a given representation.
The first two are completely circumscribed, but the third

contains a general method, for F may be any representation of

the linear group c n .

If g' is a sub-group of g, then any representation
: s -> U(s) of g contains a representation of g' ;

we need only
let the element s run through the sub-group g' ! This too may
be considered as a formal process (4) which generates a repre-
sentation of g' from a given representation of g.

The X -multiplication occurs in yet another connection.

Given two groups g, g', we can consider the pairs (s, s'), the

first member s of which is an element of g and the second s'

an element of g', as the elements of a new group g x g', the

direct product of g and g', obeying the multiplication law

(s, s')(t, i'}
=

(st, s't'l

The order of g X g' is the product of the orders of g and g'. If

: s ~> U(s) is an n-dimensional repiesentation of g and
)' : s' -> U'(s') an ^'-dimensional representation of g', then

(s, s') -> U(s) X U'(s') (5.5)

is obviously a representation in nn' dimensions of the group
g X g' ;

we denote it by X '

(with a boldface X). This

construction may be broken up into two steps. First introduce

the representation

(s, s')
-> U(s)

of g X g' ;
there is no reason why we should not designate it

by the same letter as the representation s -> U(s] of g we are

accustomed to calling the function f(x), considered as a function

of the two variables #, y, by the same letter as the function

f(x) of the single variable x. U(s) and U'(s') are thus to be

considered as functions of the same variable pair (s, s'), and then

the representation X '

f S x fl'
maY be obtained by ordinary

X -multiplication from and '. The differentiation between
boldface X and ordinary X is accordingly purely pedantic.

Examples. Unimodular Group in Two Dimensions

Let g = c C2 consist of all linear transformations s of two
variables x, y :

x' = ax + by, / = ex + dy, (5.6)
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whose determinant ad be = 1 (" unimodular "
linear trans-

formations *). A homogeneous polynomial in x, y of order/ is

a linear combination of the / + 1 monomials

xt,xt-*y,- ;xyt-\yt. (5.7)

Under the influence of s they undergo a linear transformation

which we denoted above by \s\f\ they constitute the substratum
of a representation [c]':s-> [s]/ in /+ 1 dimensions which we
now denote by (/. (/ is, although we have yet to prove it,

irreducible.

We can restrict ourselves within c to the sub-group c t of

"principal" transformations which transform each of the

variables separately :

x> = ax,
y'=--\y, (5.8)

where a 4= is an arbitrary constant. q is Abelian. This

transformation multiplies the monomials of the set (5.7) by

On associating the number ar with the element (5.8) of c t we
obtain a 1-dimensional representation which we denote for the

moment by (< r
>

;
here r can be any fixed integral exponent.

We have just seen that the irreducible representation (5/ of C2

is completely reduced on restricting ourselves to the sub-group
Cj into /+ 1 one-dimensional representations (< r ) with r = /,

/ 2, , /. This is an example of the process (4).

As an example of multiplication and addition we consider

the problem of reducing the product (/ X $g
of the two repre-

sentations (/, $g
of c into its irreducible components. The

result is contained in the formula

</x <,=
(5.9)

where v runs through the series

=/+,/+*- 2,
-

, \f-g\ (5.10)

without repetition, decreasing by 2 from term to term. This

equation is essentially identical with the Clebsch-Gordan series

which plays such an important role in the theory of invariants

of binary forms. We shall see in the succeeding chapters that

it may justly be considered as the fundamental mathematical

*
Cn will usually denote the group of all non-singular linear transformations

in M-dimensions ; it will however occasionally be used to denote the more
restricted unimodular group, in which case the restriction will be explicitly
stated.
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formula for the classification of atomic spectra and for the theory
of the valence bond.

The proof consists in showing that

g, x ,
= <5/+, + (<,_! x ,_,), (5.11)

for (5.9) then follows by mathematical induction and the fact

that obviously

<, X < -
</.

A new co-ordinate system for the representation space of (/
is obtained by replacing the basis (5.7) of homogeneous poly-
nomials of order / by another basis. In this sense we can say
that the polynomials of order / constitute the substratum of

the representation (/. The substratum of the representation

(/ X &g
is then the totality of polynomials

depending on the components of two arbitrary vectors (xy),

(rj), homogeneous and of order /in the first, and homogeneous
and of order g in the second

;
we write the total order / + g = h.

The are thus linear combinations of the (/-j-l)(g+l)
monomials

x{

y
k l

v* where i + k = /, t + K = g. (5.12)

Both vectors are transformed cogrediently under the same trans-

formation s, (5.6). The problem consists in completely reducing
the space of the polynomials into two sub-spaces (0) and

(0)' which are the substrata of the representations (* and

(/! X &g-i respectively. We first discuss the structure of

these two sub-spaces.

(0) . Expand

(5.13)

in powers of the undetermined coefficients a, jS.
The

<^ = <f>i(xy ; 17)
are special polynomials of the type and span

the sub-space (0) - We must now show that this sub-space is

invariant under the transformation (5.6) of the variables
;

i.e. that $ <f>i(x'y' ; V) ^ s a linear combination of the

<f>i
=

4>t(xy ; f7
?)-

It is clear that if this is the case then c in-

duces the representation A in (<P) ,
for on identifying the two

vectors

= *, >,
= y (5.14)

^,- becomes

<f>i(xy ; ary)
= *-'

y
1

'.
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Hence we are certain a priori that the h + 1 functions <^ are

linearly independent.
In order to arrive at the desired proof we replace #, y in

(5.13) by
x' = ax + by, y'

= ex + rfy,

and in the same way , 17 by

Now note that a*' + j8y' is the linear form

(oca + J8c)# + (aft + 0% = ^ + By

in # and y ;
hence

(a*' + jBy')/(af + ft')'
= (^

and by (5.13)

On replacing ^4, J? on the right-hand side of this equation by

A = aa + Pc, B = aft + jW,

and equating coefficients of a^~ !

j3
?

,
we obtain

<f>'.
as a linear

combination of the
<f>k .

(0)'. The substratum of the representation (y_! X &g-\
consists of the polynomials

of order / 1 in (x, y) and of order g 1 in (f , rj). They are not

polynomials of type ;
in order to increase the order in the

components of each vector by 1 we replace each such W by

The factor thus introduced in no way affects the representation.
The last step in the proof consists in showing that the total

space of polynomials is completely reducible into these two

sub-spaces ;
i.e. in showing that any polynomial can be

written in the form

- (a^ + a^ + + ah<f>h ) + (*t,
- y)f (5.15)

with unique constant coefficients a,. (The development in

terms of powers of the determinant XTJ y obtained from this

by induction is the Clebsch-Gordan series.) First, the dimen-
sionalities are correct, for

Hence it suffices to show that the various terms in (5.15) are

linearly independent, i.e. that an expression of the form (5.15),
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n which W is a polynomial of order / 1 in (x, y) and of order
' 1 in (, 77),

can vanish only if y7 vanishes identically and if

ill the coefficients a t are zero. The proof is extremely simple.
iVe first let (rj)

=
(xy) as in (5.14), then the equation =

>ecomes

=

dentically in x and y ;
hence a* = 0. Having established this

ve return to the two sets of variables xy ; 77
and obtain the

equation

rom which it follows that W = in an algebraic identity
or polynomials we may always remove a factor, such as

ty y, which does not vanish identically.

Our formula (5.9) also holds for the group c of all linear

;ransformations of x, y with non-vanishing determinant. We
nust then interpret r ,

v = h 21 in (5.9) as that representation
vhose substratum is the totality of homogeneous polynomials
)f order v in x and y multiplied by (xr) yg). In other words,
:he new S y differs from the old in that the transformation of

:he (v + l)-dimensional representation space corresponding to

r in the representation u is to be multiplied by the /
tb

power
)f the determinant ad be.

(/ X &g
is a representation of C 2 X C 2 ,

the group consisting
3f pairs (5, s') whose members s and s' run independently through
the entire group C2 . On introducing the restriction that s' is

the element s obtained from s by replacing the coefficients of

the linear transformation 5 by their conjugate complex, (/ X &g

becomes a representation S/, g
of C 2 ,

the substratum of which

may be taken as the monomials

x i

y
k .

fry* (i + k = /, t + K g)

of order /in (#, y) and order g in (x, y). It can be shown that

/, g
is also irreducible.

6. The Jordan-Holder Theorem and its Analogues

Perhaps the most fundamental theorem of mathematics is

that on which the concept of cardinal numbers depends. Let

the members of a finite set of objects distinguished by marks
a

} b, c 'be exhibited individually in this order and associated

with the symbols 1, 2, n. The theorem then states that

the
" number " n is independent of the order in which the

objects are exhibited. The proof of this theorem is of con-

siderable mathematical interest and offers the simplest example
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of the type of proof employed in establishing the Jordan-
Holder theorem. A new enumeration consists in associating
the symbol 1 with any one of the objects, the symbol 2 with

any one of the remaining objects, etc., until the entire set is

exhausted, the last object receiving the symbol ri'. We assert

that n' = n.

The proof is divided into two steps. (1) If in the new enumer-
ation the symbol 1 is associated with the same object a as in

the old, our theorem for the series from 1 to n is reduced to that

for the series from 1 to n 1. This is immediately evident on

discarding the object a and reducing by one the symbols as-

sociated with the objects &, c, in the new as well as in the

old enumeration. (2) If, on the other hand, the symbol 1 is

associated with one of the other objects b, c, then in the

new enumeration the object a is associated with some symbol
i contained in the series 2, 3,

-

-,
n' . We now introduce a

third enumeration which enables us to make the transition

between the first and the second by interchanging the symbols
1 and i in the second enumeration. The number n' is obviously
unaltered by this process. But we have now introduced an

equivalent enumeration in which the object a is associated with

the same symbol 1 as in the original and have reduced the

general case to the one considered in (1) above. The proof of

the theorem then follows immediately by the method of

mathematical induction.

As an auxiliary result of these fundamental considerations

we have the theorem that any permutation can be obtained by
the successive application of transpositions.

The Jordan-Holder theorem is concerned with an abstract

group g. An invariant sub-group g' of g which does not coincide

with g itself is said to be maximal if there exists no invariant

sub-group of g except g' and g containing g'. The factor

group g/g' is then simple, i.e. it contains no invariant sub-group
with the exception of itself and that consisting only of the

unit element I. As was recognized by Galois, the so-called

composition series

So
=

9, fli, 82,
' '

', 8-1, flr= I (6.1)

is of fundamental importance for the solution of algebraic

equations. This series begins with g and ends with I, and each

member is a maximal invariant sub-group of the preceding
member. We assume that the composition series terminates

;

this is naturally the case for finite groups, as the order necessarily
decreases from term to term. The successive factor groups

9/8l, 8l/92,
* '

', 0r-l/8r
=

8r-l (6-2)
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are simple. The Jordan-Holder theorem asserts that the

structure of these factor groups, except for the order in which they

appear ,
is uniquely determined by g.

Consider, therefore, a second composition series

So
=

9 flit 92>
' ' '

of the same group g ;
it is to be compared with the

"
standard

series
"

(6.1). The proof of the fact that this new series also

contains exactly r + 1 terms and that the corresponding factor

groups are, except for the order in which they occur, isomorphic
with the factor groups (6.2) is again accomplished in two steps.

(1) If the two second members g' 1} g x coincide, the theorem
for the group g, whose standard series contains r + 1 members,
is reduced to the corresponding theorem for the group g 1? whose
standard series contains but r members.

(2) If g x and g\ do not coincide we construct the inter-

section
t)

of g x and g^, i.e. the set consisting of all elements

common to the two.
t)

is then an invariant sub-group of Q\
and, as we shall prove, gVf) is isomorphic with g/g x . That
two elements s, t of 'g are equivalent with respect to g 1} i.e. that

they belong to the same <4

set," is expressed by the equation
/ = as where a l is in g x . If s and t are at the same time elements

of the sub-group g\, then a is also in g\ and consequently it

is an element of
f).

We may therefore consider as the elements

of Q'ljfy those sets in g which contain an element of g' t . The
elements contained in these classes then constitute an invariant

sub-group of g containing both g t and g\, and gVfy is simply
isomorphic with

Sfr/Qi. But since g^ is maximal either <p
~

g
or <p g'j. The second case implies that g x is contained in g' ly

and since it is maximal it must coincide with g' lf contrary to

assumption. Hence coincides with g and our assertion is

proved. The intersection
J)

of Q l and g\ depends symmetrically
on both, whence Q/Q\ and g^f) are also simply isomorphic.

We now proceed as follows. We construct a composition
series for

{),
which we denote simply by t), -, and compare

the following four composition series of g :

9, 0i, 82,
' ' '

9, 0i, I),'''
9, 0'i, *),

' ' '

9, 0'i, 0'
' ' '

The comparison of the first and second series is reduced to case (1).

The second and third series agree from the member
I) on, and

the two foregoing factor groups

0/0i,
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are, as we have seen, simply isomorphic with

9/fl'i, 9'ft

on interchanging their order. The comparison between the

third and fourth series is again reduced to the case (1). The

proof of the theorem for composition series containing r -f- 1

members is thus reduced to the proof of the corresponding
theorem for series with but r members, and since it obviously
holds for r = 2

(i.e.
for simple groups) the method of mathe-

matical induction establishes its general validity.
The close methodological agreement between the construction

involved in the proof of this theorem and that involved in the

proof of the independence of the cardinal number of a set of

the order in which the objects are enumerated is immediately
evident.

E. Noether 4 has given a generalization of the Jordan-Holder
theorem which is of importance for us. A correspondence
s -> s' = As of the group on itself is said to be automorphic if

multiplication is invariant under it, i.e. if (st)'
= s't' we here

neither assume that different elements 5 generate different

elements s' nor that for a given element 5' there exists an element

s such that s -> s
r

in virtue of the automorphism. Let be

a system of such automorphic correspondences of g. We now
admit only sub-groups of g which are invariant under 27, i.e.

sub-groups whose elements are carried over by all operations
of the system 27 into elements of the same sub-group. We say
that two such

"
allowed

"
sub-groups g t and g.2 have the same

structure if we can set up a one-to-one simple isomorphic

correspondence between the elements of the one and the ele-

ments of the other in such a way that every operation A of

the system 27 sends corresponding elements of the two sub-

groups over into corresponding elements. The Jordan-Holder
theorem still holds under this modification

;
its proof can be

aken over unaltered.

The vectors of an n-dimensional vector space 91 constitute

an Abelian group whose multiplication is the addition + of

vectors. We must for the moment supplement addition by
the operation of multiplication of a vector by an arbitrary
number

;
hence the concepts and theorems applying to vector

space are not truly specializations of the concepts and theorems

of Abelian groups, but there exists a thorough-going analogy
between the two. Indicating this analogy between a group (on
the left) and vector space (on the right) by ~ we have, for ex-

ample, sub-group ~ linear sub-space, automorphism ~ linear

correspondence. Indeed, a linear sub-space is a system 3t' of
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vectors such that with j and t) their sum j + ty
and the product

A by an arbitrary number A also belong to 9t', and a corre-

spondence j ->
' ^ is linear if it sends J + t) and A over into

j' + ty'
and Aj', respectively. Every

"
sub-group

f>

is here

invariant, as we are dealing with Abelian groups. If 9J' is

a sub-space of 91 the space 9t (mod. SR') obtained by projecting
9? with respect to 9t' is the exact analogue of a factor group.
A composition series consists of a sequence of spaces each

member of which is a linear sub-space of the preceding one

and has one less dimension. The last member is the space 0,

consisting of the vector alone, and the number of members in

the series is 1 greater than the dimensionality n. The Jordan-
Holder theorem is here valid but trivial.

On the other hand, this theorem is of considerable importance
on going over to Noether's generalization. Consider a system
2 of linear correspondences of the vector space 9t on itself

;
the

terms invariant, equivalent, reduction shall in the following refer

to this system. Two invariant sub-spaces 9?j and 9t2 are similar

or equivalent if a one-to-one linear correspondence J!^tj2 can

be set up between the vectors of the one and the vectors of the

other in such a way that any operation A of the system sends

corresponding vectors over into corresponding vectors. On

reading the series (4.3) established in 4 backwards, we have
the exact analogue of the composition series : each member of

the series is followed by a maximal sub-space which is invariant

under 2. (The possibility of constructing the composition
series in increasing as well as decreasing order is due to the

fact that the addition of vectors is commutative.) Furthermore,
we can obtain the concepts and theorems relating to a system
2 of correspondences as genuine special cases of those of group

theory, and not merely as analogues, by supplementing the

system 2 with all similarity transformations, i.e. by all corre-

spondences of the form -> j'
= Aj representing multiplication

by an arbitrary number A. The Jordan-Holder-Noether theorem

now states : Given a second composition series

o, 91;, 94 -,91, (6.3)

the corresponding projection spaces

9*;, 9t; (mod. 9*;), ^3 (mod. 9?;),

are equivalent to the projection spaces (4.3)

!, 9*2 (mod. 9t,), 9t3 (mod. 91,),
-
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of the original series, taken in a suitable order. The number
of members is, of course, the same in both. The reader is

advised to reconstruct the proof of this theorem by carrying

through the proof of the Jordan-Holder theorem step by step
for this case.

In particular, if the system 27 consists of the transformations

U(s) associated with the various elements s of a group in a

representation : s -> U(s), our result yields the

Uniqueness theorem : The irreducible representations separated

offfrom by successive reduction are completely determined by ,

except for the order in which they occur, considering equivalent

representations as the same. In particular ,
the complete reduction

of into irreducible components is unique, always considering

equivalent representations as the same.

7. Unitary Representations

For the case in which the representation space 9ft is unitary
and the correspondences U(s) of 9ft on itself, associated with

the element s of the group under consideration, are also unitary,
certain of the concepts introduced above are to be modified

accordingly. Two representations

s -> U(s) t
s ~> U'(s)

= AU(s)A

are to be considered as equivalent only if A is unitary, i.e. if it

is a transformation from one normal co-ordinate system in

9ft to another such. If 9ft' is a sub-space of 9ft a unitary-orthog-
onal co-ordinate system can be set up in 9ft' and supplemented
by additional fundamental vectors to form a complete unitary-

orthogonal co-ordinate system for the entire space 9ft : every

sub-space of a unitary space is per se unitary. Invariance and
reduction remain as before, but we allow only those decom-

positions of 9ft into two sub-spaces 9ftx + 9ft 2 in which 9fti, 9ft2

are perpendicular. For a system of unitary correspondences

reducibility implies complete reducibility and we have the theorem :

If 9ft' is invariant with respect to H then 9ft may be broken up into

9ft' + 9ft" in such a way that 9ft" is also invariant under . We
need merely to define 9ft" as the space defined by all vectors per-

pendicular to 9ft'. The theorem naturally holds for the case in

which 2 is a system of infinitesimal unitary correspondences or,

what amounts to the same, a system of Hermitian forms. The
theorem developed in the preceding section proves that these

irreducible components are uniquely determined, in the sense

of (unitary) equivalence, to within a permutation.
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Examples

(1) The Unitary Group in Two Dimensions

The group c = C2 of linear transformations in two dimensions

contains the sub-group U = U2 of unitary transformations.

Hence the representation (/ of c obtained in 5 is also a repre-
sentation of il. This representation is not unitary as it stands,
but it can readily be made unitary by a slight change. The
transformation of &y corresponding to the unitary transforma-

tion s of the co-ordinates x, y is that induced by s on the monomials

*n = *y (* + *=/) (7-1)

of order/. For purposes of symmetry we label these co-ordinates

with the index n = i k which runs through the values

/, / 2, , /. This is also desirable because on restricting
ourselves to the sub-group of

"
principal transformations

"

1

*->e#, y-+ ~y

xn is multiplied by the factor e n . We now employ, instead of

(7.1), the vaiiables

'*
(7 2}
v /n /^~rnV i \ k \

obtained from them by multiplication with a constant. The

representation S/ of U will then be unitary, as follows from the

equation
1 vM>& ->* i~ik

(xx + y)f = Z-^^ = r-v nx n .

We call (if even or odd according as / is even or odd. The even

representations associate the identity 1 with the reflection

*' = ~
x, y'

=
y,

and the odd associate with it the transformation 1. &/ is

also irreducible when considered as a representation of U, and
on letting / assume the values 0, 1, 2, they form a complete

system of inequivalent irreducible representations of u. The proof
of these assertions, which we employ heuristically in the follow-

ing, will be given in Chapter V. On writing a homogeneous
polynomial of order /in the variables x, y in the form

the coefficients an transform under the influence of a unitary
transformation s like the components of a vector in the repre-

sentation space of S/.
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The complete reduction

(</ x (E,)
=

/+, + (IE/.* x VO
was accomplished by breaking up the space of the

"
polynomials

"
into two invariant sub-spaces (0) and (0)'. We must

now verify that these two sub-spaces are mutually orthogonal
in the unitary sense. A general polynomial may be written

where the xn are given by (7.2) and the are the corresponding
monomials

Two such polynomials with coefficients a ni,, & are orthogonal
if

Sdn* bnv = 0.

The polynomial x/g, whose highest coefficients a/9
= 1 while

all others vanish, is to within a constant factor %t g and is

obviously perpendicular to all polynomials (0)', for in all these

latter the coefficient of xJfy vanishes. But under the unitary
transformation

s:x'=*x + fiy, y'=-px + ay, (7.3)

where aa + j3j8 1, xf& goes into

(a* + ]3y)/(af + jJq)^. (7.4)

Since (0)' and the orthogonality of polynomials are both in-

variant under the unitary transformation 5, (7.4) is also orthog-
onal to (<P)' and, with the help of the definition (5.12) of (0) ,

it follows from this that all polynomials of (0) are unitary-

orthogonal to those of (0)'.

(7.3) is the most general unimodular unitary transformation.

This is derived in the same way as the familiar formula for the

orthogonal transformations of two variables with unit deter-

minant in plane analytical geometry. On writing the coefficients

a = ic + a, j8
= -

IJL + iv (7.5)

in terms of their real and imaginary parts we see that each such

transformation is characterized by four real parameters K
} A, /i, v,

the sum of whose squares is 1. The composition of two trans-

formations s : (K, A, p,, v) is accomplished in terms of these

parameters by Hamilton's quaternion multiplication ; this latter

led to the vector calculus.
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(2) Unitary Groups in n-Dimensions

The totality of tensors of order / is the .substratum of an

^-dimensional unitary representation (it)/ of the group u = un ,

*or on denoting the components of an arbitrary tensor by
F(i li2

'

if)
the sum

is a unitary invariant. On restricting ourselves to the

J .^-dimensional linear manifold of anti-symmetric tensors we

Lake as the variables in tensor space those components
F(t' 1 z'2 if)

for which i l < z'2 < < if.
The sum (7.6)

for these comp6nents only is, however, equal to the complete
sum (7.6) divided by /!; hence the representation {u}/ of U,

whose substratum consists of all anti-symmetric tensors, is

unitary. The situation is somewhat different for symmetric
tensors. The most general symmetric tensor of order / trans-

forms like X X X (/ terms), i.e. we may for the

present purpose set

F(iii*
' ' '

if)
= ** t *i,

' ' '

Xif (7.7)

We write the monomial on the right in the form

v/i W* v^H /% 1 ^x
l *2 xn I

- 1
/

as before
; fr is the number of times the index r appears in the

series i lj z'2 , , if.
In this sense we write the components of

a symmetrical tensor

F(iii*
' ' *

if)
= Wi,/2.

* '

', /)

The sum (7.6) becomes in this case

extended over all integral fr ^ for which /j + /2 + + /n ^^
/.

The coefficient indicates how often the term \F(iii z
* ' *

*/)i
2

occurs in the sum in consequence of the fact that its value is

unchanged on permuting the indices. We must therefore

consider the quantities

/, . /n)

/,!
' /!

as independent components of an arbitrary symmetric tensor

of order / in order to obtain a unitary representation [il]A
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The truth of this assertion follows from the fact that the special

tensor (7.7) satisfies the equation

(7 ' 8)

We have already seen in I, 5 that a normal co-ordinate

system can be so chosen that a commutative system 2 of

unitary correspondences is completely reduced to a set of

1 -dimensional systems. The only irreducible unitary repre-

sentations of an Abelian group are accordingly I-dimensional.

For it follows from

U(s)U(t) = U(st) (4.1)

and the Abelian character of the group that the unitary matrices

U(s) associated with the elements s are commutative.
If <p and

'

are unitary representations, then -f >',

X '

are also. The first fundamental problem for a given

group Q is to find a complete system of inequivalent irreducible

unitary representations of g, for then any unitary representa-
tion of Q can be obtained by the addition of these irreducible

representations. The second fundamental problem is to reduce

the product X '

of two irreducible representations ,

'

of g
into its irreducible components ; or better (after having solved the

first problem), to determine how often each of the irreducible

representations occurs in this product.
We illustrate these problems on the example offered by

rotation groups, which are of particular importance in quantum
physics.

8. Rotation and Lorentz Groups

(a) The Group of Rotations in the Plane

We describe the 2-dimensional plane by a complex co-

ordinate x. The rotations of the plane are then given by

#->*' = #, (8.1)

where = e^ is a constant with unit modulus. (The rotations

of -the real 2-dimensional plane thus coincide with the unitary
transformations of a single complex variable.) The angle of

rotation
<f>

determines the rotation completely, but it is of course

only determined mod. 2?r by the rotation. The angle of rotation

behaves additively on composition : the rotation
<f>

followed by
the rotation

<f>'
results in the rotation

<f> -f- <f>'.
This rotation
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group is accordingly a one-parameter continuous Abelian group.
We obtain a 1-dimensional representation 2)<

m ) of our rotation

group b = b 2 by associating with the element e, (8.1), the linear

correspondence
x -> x' = em x = eim* x

y (8.2)

where m is any fixed integer. I assert that the
<

J)(m ),
m running

through all integral values, constitute a complete system of

irreducible unitary representations of b 2 . This can be seen as

follows.

Any irreducible representation is necessarily 1-dimensional :

it associates with the rotation
<f>

a number
%(<f>)

of absolute value

1 such that

+ f )
= xtt) x(f )

We assume that our representation is continuous
;

then %(<(>)

is a continuous function of
(f>

with period 2rr. First, x(O)
= 1.

We write x(</>)
* A and determine X(<f>) uniquely by the require-

ments that A(0) and that X(<f>) shall be a continuous function

of
<f>.

We then have

A0 + f)=A(fl + A(f), (8.3)

for the right- and left-'hand sides of this equation could at most
differ by an integral multiple of 27r, but as it is written both

sides agree for
<j>'

- and vary continuously with
<f>'. (8.3)

satisfies the condition A(0)
= and we obtain from it the further

equations

A(- $ =- A($, A(^) -.= h A(^), (8.4)

where h is any integer. On replacing <f>
in the second of these

equations by <f>/h we obtain

(8.5)

It follows immediately from (8.4), (8.5) that for every rational

number k/h (k, h integers)

In accordance with our assumptions A(27r) is an integral multiple
2w7r of 2n. On setting <f>

= ZTT in (8.6) we obtain the equation

A(<)
=

m<f> for all
<f>

which are rational fractions of 2-rr
;

the

continuity requirement then allows us to assert its validity

for all real values of the argument <f>.
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The simple equation

$)<
m ) X $<m') = 3)(m+m/ )

is here valid.

Consider the function f(p) on the unit circle in the complex
x plane. If the point p goes over into the point p

f

under the

rotation e, the function / goes into a function /' which is defined

by the equation

f(p') =

The transition /->/' is a linear correspondence in the oo-dimen-

sional space of functions f(p) and is associated with the rotation

e
;

this obviously defines an oo-dimensional representation of

the rotation group b2 ,
which we denote by . is unitary if

we take as the square of the absolute value of a
"
vector

"
/

the integral of
\f(p)\

2 with respect to the element of arc dp on

the unit circle. The fact that any function (satisfying suitable

conditions) on the unit circle can be developed in a Fourier

series means that in the reduction of into its irreducible com-

ponents each of the 1-dimensional representations 3)(m) occurs

once and only once. More precisely, this reduction is to be inter-

preted with regard to the completeness relation.

(b) The Group of Rotations in 3-dimensional Space

We consider the functions / = f(P) on the unit sphere as

the vectors of an oo-dimensional unitary space whose metric

is given by f \f(P}\
2dw

;
dw is the surface element of the sphere

over which the integration is to be extended. If the point P
goes over into P' = sP under the rotation 5, the function /
goes over into the function /' defined by f(P'} =f(P). The
surface harmonics Y\ of degree / [cf. II, 4] obviously span a

(21 -f l)-dimensional sub-space flftj which is invariant under the

totality of transitions /->/' induced in function space by the

various elements s of the rotation group b = b3 here again we

speak of this representation as . They are consequently the

substratum of a certain representation S)j of b which is induced

in SRj by b. On choosing a definite direction as that of the

z-axis we may, as in II, 4, take the set

YT> (m = /, / - 1, -,
-

/)

as a basis for the surface harmonics of degree /. We then have

a unitary representation, and the sub-spaces 9fti corresponding
to the various values 0, 1, 2, of / are mutually perpendicular
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in the unitary sense (orthogonality properties of surface har-

monics), b contains the 2-dimensional rotation group b 2 e.g.

as the sub-group of rotations about the 0-axis. The structure of

y{
m) shows that on restricting b 3 to this sub-group b 2 the

representation
(

) l
is reduced into the 1-dimensional representa-

tions $)(m) for which m = /,
/ 1, ,

/. The fact that

any function on the unit sphere possesses a unique expansion
in terms of surface harmonics means that on reducing into

its irreducible components each of the representations 5)j f
/ = 0,

1, 2, ,
occurs exactly once. This reveals the true signifi-

cance of surface harmonics ; they are characterized by the

fundamental symmetry properties here developed, and the

solution pf the potential equation in polar co-ordinates is merely
an accidental approach to their theory.

Rotations are orthogonal transformations of three variables

x, y, z. If we wish to include with the proper rotations with

determinant + 1 also the improper ones with determinant 1
"
augmented rotation group b'

"
this can be done by intro-

ducing the reflection

i : x' = -
x, y'=-y, z' = - z (8.7)

in the origin. Its reiteration ii is the identity, and it commutes
with all rotations. The matrix corresponding to it in the

representation defined by the surface harmonics of degree / is

the (21 + l)-dimensional matrix
( 1)', for the surface harmonics

of degree / are homogeneous polynomials of degree / in #, y, z.

We can thus obtain two representations 2)^, 5)j~~
of the aug-

mented rotation group from the representation 3)j of proper
rotations

;
these two coincide with 3) t

for proper rotations,

but in the first the matrix associated with the reflection i is + 1

whereas in the second it is 1. We call this 1 the signature
of the representation. Hence in the oo-dimensional repre-
sentation $ of the augmented group b' each 5), occurs once

with signature ( 1)*, but not with the opposite signature.

Although we are not as yet in a position to prove it, the

5), (/
=

0, 1, 2, )
constitute a complete system of in-

equivalent irreducible (single-valued) representations of the

rotation group b, and the $)
z

h
, f together constitute such a

system for the augmented rotation group b'.

Now consider the unitary function space of all functions

f(P) in 3-dimensional space for which the integral |/|
2 over all

space is finite. Let the representation induced in this space

by rotations s, in which the transition from / to the transformed

function /' sf is associated with s, be denoted by 6. Each
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function f(P) can be expanded in a series of terms of the form

<f>(r) YI. Choose a complete orthfogonal system <f>i(r), <f>2(r),

in the domain of functions
<j>(r)

of the radius r, in the sense of

the equations
oo

m r.r<*r = 8mn .

The functions of the form
<f>n (r) YI then constitute a (21 + 1)-

dimensional sub-space 9ft nZ which is invariant under rotations

and in which @ induces the representation 2)j. Different 9l nl

are mutually unitary-orthogonal. Each 3), then appears in

(S infinitely often, its various occurrences being distinguished by
the

"
radial quantum number "

n. Consider the analysis of

single electron spectra given in Chap. II, 5, in the light of these

mathematical developments. We then see that the azimuthal

quantum number / is of purely group-theoretic significance,
whereas the radial quantum number n refers to the dynamical
situation, for the manner in which the orthogonal system <f>n (

r
]

is to be chosen is determined by the dynamical differential

equation.
The proper rotations of 3-dimensional Euclidean space about

the origin of Cartesian co-ordinates #, y, z, i.e. the real orthog-
onal transformations with determinant -f- 1, are most easily

represented by a stereographic projection of the unit sphere
about the origin on to the equatorial plane z 0, the south pole
of the sphere being the centre of projection. If the point

(x
f

, y' , 0) be the image on the plane of the point (#, y, z) on the

sphere and we write x
r + iy' ,

the formulae for the projection
are

But it is preferable to introduce the two homogeneous complex
co-ordinates

, rj
in place of by means of the equation

the south pole :
77

: 1 is then included. We then have

x + iy : x iy : z :

Accordingly each unitary transformation

cr '.
:=== oc -j pf}) 7/

===
*Xs i~ ^7

of the co-ordinates f , rj corresponds to a rotation s of the sphere,
the points of which are represented by the rays f :

rj
of 2-dimen-

sional unitary space. Since, as is readily seen, any point and
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tangential direction through it on the sphere can be carried

over into any other such configuration on the sphere by means
of such rotations, we obtain in this way all rotations. Since

we are only concerned with the ratios of the coefficients a, /?,

y, 8, the arbitrary factor of proportionality may be chosen in

such a way that the determinant of the transformation is 1.

Nevertheless this normalization is somewhat artificial as the

correspondence is still double-valued, for on multiplying the

coefficients of the unitary transformation by 1, i.e. on going
over from a to a, the normalization is unaffected. Hence to

each element a, (7.4), of the unimodular unitary group u corre-

sponds a rotation s : a -> s under which the co-ordinates

x -f iy, x iy, z transform like

m 2&j, #-W, (8.8)

or

*~i?f + ?, y~ Jfo-?), ~~&~-w (8.9)

(The symbol ~, which we occasionally employ, means that the

expression on the left transforms like the one on the right.)

We obtain in this way all rotations, each one exactly twice.

The rotations about the xr-axis are obtained from the
"
principal

transformations
"

>t ^> i
*- e, 77

=
-r,

of u. In fact, on setting e = e*" = e(a>) the angle of rotation

about the z-axis is
<f>
= 2at. In virtue of the correspondence

a -> s the rotations in 3-dimensions constitute a representation
of the group U

; and, conversely, the association s -> a is a

representation of the group b -= b 3 of 3-dimensional rotations

by U, although this representation is double-valued. In virtue

of this correspondence s -> a any representation U(a) of U yields

a representation of b 3 (*'
F process," 5) ;

Sv may thus be thought
of as a representation of b 3 ,

in which case we write it $j, where

y =^ -v. The (" even ") 2)y with integral j are single-valued,
Z

those with half-integral (i.e.
half an odd integer) j are double-

valued. On restricting the group b3 to the sub-group b 2 of

rotations about the 0-axis 2),- is reduced into the 2j + 1 one-

dimensional representations 5)<
m ) (m = ;, j 1, , j). To

show this we first note that the substratum of our representation

3), consists of the monomials (7.2)
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where m runs through the values j, j 1, , j. The
transformation induced on these variables by a rotation

<f>

about the 0-axis is accordingly

x(m) -> e( m<f>) x(m).

The representation a -> s of il is itself contained among the

representations 5), of u constructed above
;

it is, in fact, 3) lt

To show this we note that if (f, 77), (', 77')
be subjected to the

same transformation a of U, then the determinant
77' 77^', as

well as | + 7777,
is invariant. Consequently (|, 77)

transform co-

grediently to
(77', '), or as

(77, ) ;
hence

x + fy ~ T;

2
,

# fy ~ f
2

,
z ~

77. (8.10)

The representations 2>* with integral j are identical with those

obtained above as the representations induced on surface har-

monics of order j, for each polynomial in #, y, z of degree j is,

in virtue of (8.10), equivalent to a form of order 2j in
, 77.

If we wish to augment li U 2 in a manner paralleling the

augmentation of b = b 3 by the improper rotation i (reflection
in the origin) we must consider it as an abstract group rather

than a group of linear transformations in two variables. Denote
the element corresponding to i by t and the elements of the

original u by a as before. We define the augmented U
1

as the

totality of elements of the types a and la
;

i must naturally

obey the multiplication laws

tcr = at, u = \.

(+ and (~ are then those representations of u' which coincide

with ( for elements of the restricted group il and which as-

sociate with the element t the unit matrix -f- 1 and its negative
1, respectively. The sign is again called the signature.

The representation
"

associates the augmented rotation group
b' 3 with U'.

(c) The Lorentz Group

Let the 3-dimensional Euclidean space be referred to homo-

geneous projective co-ordinates xa (a
=

0, 1, 2, 3) defined by
x

i Al
xz X3x =

, y ==
,

z = .

XQ XQ XQ

The equation of the unit sphere is then

-*5 + *f + *J + *S = (8.11)
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and the formulae for the stereographic projection considered

above become

On subjecting f, 77
to an arbitrary linear transformation a the

#a undergo a corresponding real linear transformation s which
leaves the equation (8.11) invariant. If the absolute value of

the determinant of or is 1, we can readily show that the form

-* + *f + *! + * (8.13)

is itself invariant under the corresponding s, and that the deter-

minant of s is + 1.

We now consider x =
ct, x 1} x 2 ,

x3 as the co-ordinates of

space-time; (8.11) is then the equation of the light-cone, the

generators of which are the possible paths for a beam of light.

In the restricted thebry of relativity normal co-ordinate systems
for space-time are connected with each other by arbitrary
Lorentz transformations, i.e. by any real linear transformation

which leaves the form (8.13) invariant and which does not

interchange past and future. Lorentz transformations con-

stitute a group, the
4t

complete Lorentz group,
"
and this group

describes the homogeneity of the 4-dirnensional world. This

group consists of "positive" and "negative" transformations,
i.e. transformations with determinants -f- 1 and 1, respectively.
The first constitute the

<4
restricted Lorentz group," from which

the complete group is obtained by introducing in addition the

spatial reflection

*o -> *
, Xa - - ** (

=
1, 2, 3). (8.14)

Under the restricted group right and left, as well as past and

future, are fundamentally different. Since the expression for

x in (8.12) is positive definite, we may state the result obtained

above in the form : any linear transformation of f , 17,
with deter-

minant of absolute value 1, induces a positive Lorentz transforma-
tion s in the xa . Transformations a which differ only by a factor

eiK of absolute value 1 give rise to the same s. The correspondence
a -> s is naturally a representation.

The question of whether every positive Lorentz transformation

s can be obtained in this way arises immediately. That this

is in fact the case can be seen from general continuity con-

siderations, for the positive Lorentz transformations constitute

a single connected continuum. But it is also easily proved by
elementary methods. Since we have seen in (b) above that the
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rotations of space 5 are obtained from the unitary transforma-

tions a, we need only to examine the Lorentz transformation

affecting the time axis, where a is a real non-vanishing constant.

But this transformation is obtained from the unimodular a :

a

Returning to the general case, the correspondence 5 -> a is a

2-dimensional representation of the restricted Lorentz group.
But a is determined by s only to within the arbitrary

"
gauge

factor" tA
;
we may therefore normalize it by the condition

that the determinant of a shall itself be unity, not merely its

absolute value. Even so, a remains double-valued, for a

satisfies the normalizing condition as well as a. This repre-

sentation s -> a contains the representation of the rotation

group considered in (b) on allowing s to run through the sub-

group of spatial rotations contained in the restricted Lorentz

group.
The expressions (8.12) are Hermitian forms with matrices

1

1

1

i o
So =

i

1

1

-1
(8.15)

Hence if denotes the one-columned matrix with elements f, 77

equations (8.12) may be written

** = ?$?. (8.16)

On replacing , 77 by T/,
the xa undergo the spatial re-

flection (8.14). That is one way of including the negative
Lorentz transformations. But if we require that the corre-

sponding transformation of
, 77

be linear, we must introduce in

addition to =
(f , 17)

a second pair j'
=

(', 77')
which undergoes

the transformation a' contragredient to 3. Then

(77, |)~(', 77') to within the factor d,

(*?> )~('> *?')
to within the factor d,

where d is the determinant of a. Defining

^o = S
OI 5^ = Sn (a

=
1, 2, 3),

the quantities

Pure Mathematical Physics



ROTATION AND LORENTZ GROUPS 149

undergo the same transformation s as (8.16), provided the

absolute value of the determinant of a is 1. The same is true

for any linear combination of the two, e.g. xa + #* Hence the

quantities

x^lS^+l'S'^' (8.17)

undergo the given positive Lorentz transformation s when
, rj

are subjected to a certain transformation a and simultaneously
', j]'

to the transformation a' contragredient to a. Furthermore,

they undergo the transformation (8.14) on interchanging the two

pairs , j', i.e. on subjecting the four variables to the trans-

formation

T: ->', T^V; '-* *?'->*? (8-18)

The expression

&' + ft
is invariant in virtue of the transformation law of

', r/'
defined

above. To obtain an expression which is also invariant under
the interchange (8.18) we must add to the above the expression
obtained from it by this interchange :

(&' + W) + (I'f +W (8-19)

It will be found advantageous to denote the column con-

sisting of the four elements (, rj ; ', rj') by a single letter jr.

Let that linear transformation of these four variables which

transforms
, 17

in accordance with S* and
', tf in accordance

with 5 be denoted simply by 5
lt

: (8-17) then becomes

*=-?,?. (8.16')

We must now ask to what extent the linear transformation or

of the four variables is determined by the requirement that

it induce a given (positive or negative) Lorentz transformation

s of the Hermitian forms #. It suffices for this purpose to

inquire what transformations of the induce the identity on

the variables ,ra . The only transformations of this latter kind

are those which multiply , 97
with a common factor e l * of absolute

value 1 and at the same time
', rj'

with any factor e^' (inde-

pendent of the first) of absolute value 1. But a can be more

precisely specified by the requirement that (8.19), i.e. jTj, be

also invariant. The two arbitrary
"
gauge factors

M tA
,

e 1 *'

must then coincide : the substitution a is then determined to

within a factor e'*.

Our analysis reduces the problem of the representations of

the Lorentz group to the corresponding problem for the uni-

modular linear group C 2 .
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9. Character of a Representation

The trace of a linear correspondence A, i.e. the sum of the

elements in the principal diagonal of the matrix A, is an in-

variant under transformations of co-ordinates which is of

particular importance. The trace x(s) of the correspondence

U(s) associated with the element s of the group Q in a repre-
sentation of g is called the group characteristic, or, in

order to avoid assigning yet another meaning to this second

word, which has already appeared in another important con-

nection in quantum mechanics, simply the character of the

representation . Equivalent representations have the same
character ; the name is so chosen because the converse of this

theorem is true within wide limits. Since [/(I)
=

1, the value

of the character ^(1) for the unit element is equal to the dimen-

sionality of the representation.
It follows from the equations

U(asa~
l

)
- U(a)U(s)U(a~

1

}
- V(a)U(s}U~

l

(a}

that the matrices U(s) and U(asa~
1

}
differ only in their orienta-

tion and consequently have the same trace :

X(asa~
l

)
= x(*Y

Now s and asa" 1 arc any two conjugate elements of the group Q,

i.e. they belong to the same class of conjugates in the sense of

3. We speak of a function f(s) on the group manifold which
has the same value for all elements s belonging to the same
class as a class function ; such a function can at most allow us

to distinguish between different classes, but not between ele-

ments of the same class. The distinguishing feature of class

functions can also be expressed in the equation

f(st)=f(ts).

The validity of this equation forf= x follows from

U(st)
= U(s)U(t), U(ts)

= U(t)U(s)

and the fact that the trace of the matrix AB is equal to the

trace of BA. _
The character x(s) f a- unitary representation : U(s~

l

)
=

U*(s),
satisfies the equation

X(s-i)
= fa). (9.1)

We shall say that the characters of irreducible representations
are primitive. Any unitary representation can be reduced

into its irreducible components, and the normal co-ordinate

system in the corresponding sub-spaces can be so chosen that
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two irreducible constituents are equal if they are equivalent.
If in this sense

& = m1) + m'V + -

, (9.2)

where
f), J)',

are inequivalent irreducible representations and

in, w' are the numbers of times they occur in
),

then the

character X of ) is expressed in terms of the characters x, x'>
' ' '

of
I), !)', by the equation

From an n-dimensional representation S:s->U(s), with

the character x(s), and an n'-dimensional
'

: s ->
C/'(s) of

character x'(s) we can construct the (nn') -dimensional repre-
sentation X )'. The elements in the principal diagonal of

U(s) X U'(s) are obtained by multiplying all elements in the

principal diagonal of [7(5) by those in the principal diagonal
of U'(s) : the character of $$ X )' is consequently x($] x'(s}- Again,
if is a representation of the group g, )' a representation of

the group Q', then the representation fy X & of g X $' has the

character defined by
t(*,s')= X(s)x'(*'), (9-4)

where s runs through the elements of g and .9' those of g'.

We need not distinguish between a 1 -dimensional repre-
sentation and its character

;
the character satisfies the simple

equation (4.2). This holds, for example, for the characters

e(m<f>), eq. (8.2), of the rotation group b 2 .

By the theorem on the transformation of unitary correspond-
ences to principal axes, each element of the group U U 2 is

conjugate to a principal element, i.e. an element of the form

o 1 (9.5)

The characteristic values e, 1/e are determined to within the

order in which they appear. Introducing the angle CD by the

equation e ^(cu), co characterizes a class of conjugate elements

of U
;
we are only concerned with w mod. 2n, and furthermore

the class a* coincides with the class o>. Since for any re-

presentation of U the character x(s) depends only on the class

of the element s, it suffices to calculate it for elements of the

form (9.5). It must be a periodic function of the angle a> with

period 277, and it must furthermore be an even function of oj
;

its value for S/- is

p /f 1 C"(/ J

1)

x/
= e r + e/- + . . . + e-/ = !__1__. (9.6)
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The characters of the representations considered in the

other examples of the preceding section are just as readily

calculated.

10. Schur's Lemma and Burnside's Theorem

Lemma (10.1).
5

Assumption. Let Z*be an irreducible system
of linear correspondences of an m-dimensional vector space t

on to itself, and Q such a system of an n-dimensional vector

space . A linear correspondence A shall satisfy the equation

ZA - AQ (10.2)

in the following double sense : for each U of Z there shall exist

a V of Q such that

UA - Ay, (10.3)

and conversely for each V of Q there shall exist a U of Z such

that this relation is fulfilled.

Assertion. Either A = or m n and det A ^ ;
in the

latter case Z and Q are equivalent.

Proof. We first make use of the assumption that is

irreducible in connection with equation (10.2) in the first sense.

Considering the &th column

a lki a 2ki
' *

",
a mk

of A as a vector a^
k
\ equation (10.3) asserts that the vector

U&M associated with a^ through the correspondence U is

a linear combination of the vectors a (

*), specifically that

l/a<*> = 2>**a<*>, y=\\vhk \\.
h

Consequently the sub-space of r spanned by the n vectors a^^

is invariant under Z. But because of the assumption that Z
is irreducible either a^) = 0, A = 0, or the a^ span the entire

space t, in which case m of them are linearly independent ;

this latter is possible only if n ^ m. That our conclusion

contains two possibilities is due to the fact that the concept
of irreducibility contains such an alternative.

The second part of the assumption can be given a simple

geometrical interpretation on going over to the transposed
matrices : 2* is irreducible and for each F* of Q* there exists

a U* of Z* such that

V*A* - A*U*.

The reasoning employed in the first part of the theorem allows

us to conclude : either A* = or m 2> n. We summarize the

results thus far obtained in the statement : Either A = or
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m = n
;

in the latter case the m = n columns a (*) of A are

linearly independent, i.e. the determinant of A does not vanish.

But then U and V are determined uniquely by the relation

(10.3) and Z and Q are equivalent.
In formulating these results it is desirable to consider the

case of equivalence separately :

I. // the two irreducible systems 27
,
Q are inequivalent, (10.2)

can only be satisfied by A = 0.

II. //2 is an irreducible system a correspondence A commutes
with all correspondences U of the system :

UA - AU (10.4)

// and only if A is a multiple of the unit matrix 1.

Assertion II follows from the lemma proved above by
elementary methods and the fundamental theorem of algebra.
For by the latter there exists a number a such that

det (A al)
=

0, and since A' - A al satisfies (10-4) for

all U if A does, we conclude that since det /T --- we must
have A' -- 0.

Applied to representations, our results are :

fundamental Theorem (10.5). I. If s -> L
r

(s], s ->
l'(s) are

two inequivalent irreducible representations of a group g, the

equation

U(s)A --- Al'(s)

can be satisfied by no matrix A which is independent of s, except
A - 0.

II. A matrix A which is independent of s and which satisfies

the equation

U(s)A - AU(s)

for all s is necessarily a multiple of the unit matrix 1.

If there exists a matrix A which satisfies U(s)A = AU(s)
identically in s and which is not merely a multiple of the unit

matrix 1, the argument employed above supplies us with a

constructive process for the reduction of the representation
s -> U(s) with the aid of A.

We now consider an application of these important results,

which are fundamental for the entire theory of representations,
in order to prove a theorem due to Bnrnside. Let 27 be a

multiplicative system, i.e. if U
}
U' are two correspondences in

Z then the product UU' is also a correspondence in H. This

concept is somewhat wider than that of a group ;
we need not

require that U possess an inverse its determinant may be 0.

Burnside's Theorem (10.6).
6 In an irreducible multiplicative
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system E of linear correspondences U \\uik \\
of an n dimensional

vector space on to itself the components u ik are linearly independent.
This asserts that the only matrix L which satisfies the equation

tr(UL) = lkiUi* =
\, k

for all matrices U of the system is L = 0. Contrary to the

assertion, we assume there exist non-vanishing matrices satis-

fying this equation ;
such matrices we shall call L-matrices.

It is of course possible that every L-matrix whose first column

vanishes must itself vanish. But in any case we can find a

definite column index h with the following properties : there

exist non-vanishing L-matrices whose first h 1 columns
vanish and are such that if the fe

tb column also vanishes then

necessarily L = 0. We shall call L-matrices whose first h 1

columns vanish special L-matrices. They constitute a linear

family of m ^ n dimensions
;
we denote a basis for this family

by
L< 2

> /.
The hib column of a-special L-matrix will be written t.

Since E is multiplicative the equation

tr (U'UL) -

is satisfied by each L-matrix, where [/, U' are arbitrary corre-

spondences of the system 27. With L, UL is also an L-matrix
;

obviously it is a special L-matrix if L is. Each of the matrices

UL< 1

\ UL(*\ ,
Ul

is therefore a linear combination of L (1
>, ,

L(m > and each of

the vectors {/I*
1

), ,
Ul^ is a linear combination of the

vectors I*
1

), ,
l(m >. Accordingly the vectors I (1 \ ,

l(m )

span a non-vanishing sub-space which is invariant under all the

correspondences U
}
and in consequence of the irreducibility

assumed above it follows that m = n and the vectors l^
1

), ,

l^span the entire n-dimensional space. The basis 7J 1

),

- *

,
Z,<

n >

of the family of special L-matrices can be chosen in such a way
that l^

1

), ,
I (n ) are the fundamental vectors of the space ;

l
(1 ) is then the column (1, 0, 0, , 0), etc. Since then

t7I(0 = Mlr I(D+ . + Mnr l<) (10.7)

we must also have

+ unr LW. (10.8)
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We now consider an arbitrary column, say the kth
,

of L.

(This is of course of no interest if k < /t,
for the first k 1

columns vanish.) Suppressing the second index k, we now let

I = (/lf
-

}
ln )

denote the kih column of L. Then in accordance

with (10.8), equation (10.7) holds for the present I, i.e. the kih

instead of the /t
th column of L. Introducing for the moment the

matrix
(1) . . . 7<n) '

\ n

X")
*

consisting of the kih columns of H l

\

(10.7) as the matrix equation

IIA = AU.

n
\ we may write

But it follows from this that A must he a multiple of the unit

matrix, i.e.

li
= A 5,, 8,.

=
^Q ^^ y)

;

or, returning to the original notation by adding the column
index fe,

_ t
=

0, A = 1.

(10.9)

Here we have, by the foregoing, X
l

~
The equation

tr ([//>>)
^

becomes
n

y u kr\k
=

0, (r
=

1,
t 1

i.e. all correspondences of the system Z* carry the vector A

with components (A1? A2 ,

*

*,
A n )

over into the null-vector.

In consequence of the irreducibility of Z1

this vector must there-

fore vanish, which is in contradiction with the equation AA
~

1
;

Burnside's theorem then follows by rednctio ad absurdum. If

we know that the unit matrix is contained in the system Z1

,
as

is the case for a representation, we can conclude that A
t
- = by

taking U in (10.9) as the unit matrix.

Reducibility requires that on employing an appropriate
co-ordinate system all matrices U of the system 27 have an

entire rectangle of vanishing elements and consequently implies

a system of homogeneous linear relations between the components
u ik of a very special kind. Burnside's theorem states that if

there exists no system of homogeneous linear relations of this

special kind, then there exists no linear dependence at all. The
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real reason for this remarkable fact is of course to be found in

the assumption that E is closed with respect to multiplication.
If our system Z consists of an irreducible representation

which associates with the elements s of the group g the matrix

U(s), we see from Burnside's theorem that the components of

U(s) are linearly independent. The method developed above

can readily be extended to prove the same for the components
of two or more inequivalent irreducible representations U(s),

U'(s), -.
7 From this it follows that in particular there can

exist no linear dependences between their characters x(s), x'(5)>
* " '

Any unitary representation can be reduced into irreducible

components ;
the character of is expressed in terms of the

characters of these irreducible representations by (9.3). Since

x(s), x'(s]
are linearly independent the coefficients m, m ', ,

which give the number of times the irreducible representations

I), f)', appear in
,
are uniquely determined. This con-

stitutes a new indirect proof of the following result, which has

already been proved in 6 in a more general and more elementary

way : The irreducible representations into which ) can be reduced,

as well as the number of times they occur, are uniquely determined

by ,
no distinction being made between equivalent representations.

Two unitary representations ^ and 2 are obviously equivalent
if every irreducible representation which is contained in the one

is contained in the other the same number of times. Hence
if

t and 2 are inequivalent the character of ^ cannot be the

same as the character of 2 because of the linear independence
of the primitive characters : a unitary representation is uniquely
determined by its character alone, and its character may be used

as a unique name for the representation itself. We here go no

further into these extensions of Burnside's theorem, which are

due to Frobenius and /. Schur, as we shall obtain the same results

by a more profound method in the next section under assump-
tions which are more restrictive but which are sufficient for

our purposes.
We mention only one consequence. ,

)' being representa-
tions of the groups g, g', respectively, then |) X

'

is an irreducible

representation of g X g'. Indeed, there can exist no homo-

geneous linear relation with constant coefficients cik , IK between

the components u ik(s)u
f

lK (s
f

)
of U(s) X U'(s') except the trivial

one c = 0. For on applying Burnside's theorem for the

irreducible system we have

Z Cik , ,<

'

u (5')
-

0,
t, K

and on applying it again for fa' we must have c ik} LK
= 0.
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11. Orthogonality Properties of Group Characters

// the abstract group g is finite, then any representation

JQ : s -> U(s) is equivalent to a unitary one. To show this take

any positive definite Hermitian form, e.g. the unit form, subject
it to all transformations U(s) of and sum over s, We thus

obtain a positive definite Hermitian form H which is invariant

under each of the transformations U(s). Now choose the co-

ordinate system in such a way that H becomes the unit form
;

then /(s), expressed in terms of these co-ordinates, is unitary.
This same method of summation over the elements of the group

gives rise to the fundamental orthogonality relations.

Let ):$-> U(s), $' : s -> U'(s) be two inequivalent irre-

ducible representations of the finite group g, the former being

g-dimensional and the latter g'-dimensional. We write

U(s)=\\u tlc (s) \, U'(s)
=

\\uUj\\,

/'->(*) ==||u'K (5)||.

For a unitary representation )'

*M =
"'(*)

If A is an arbitrary matrix with g rows and g' columns then

obviously the sum

U(t)AU'-*(t) = B, (11.1)
t

taken over all elements / of g, is invariant in the sense that

U(s)BU'~
l

(s)
- B. (11.2)

In fact, the left-hand side of (11.2) becomes, in virtue of the

fact that s -> U(s) is a representation of g,

where r -=
5/, s being fixed and / running through all elements

of the group. We therefore obtain equation (11.2) or

U(s)B = BU'(s).

In accordance with the fundamental theorem (10.5) it follows

from this that B = 0, i.e.

Z Z "a-('KX(0 - 0.
t k.K

Writing s in place of t and remembering that the a k>< are arbitrary

numbers, we obtain the g
2

g'
2
equations

or, in dealing with unitary representations,

'*== o.
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Taking the single irreducible representation 5 -> U(s) in-

stead of the two inequivalent representations , )',
we find by

the same argument that the square matrix

U(s)AU-
l

(s)
= B,

found from an arbitrary square matrix A, must satisfy the

U(s)B = BU(s).

This requires, however, that B be a multiple of the unit matrix 1,

i.e.

Z Z Uik(s}a k< UM (S)
= a S

lt .

k.K.

the number a depends on the matrix A, the dependence being
of course linear and homogeneous. Taking as A that matrix

which has as its only non-vanishing element akK 1, we obtain

the equation
Zuik(s)u(s)

= *.*&. (11.4)
*

Now
||ttwc(s)||

is the matrix reciprocal to

On taking t = i in (11.4) and summing over i ==
1, 2, , g

we find that

where h is the order of the group g.

Expressing the sum JT
1 m terms of the mean value 90? = 7 27>

* ^ $

our results may be written in the form

otherwise

for any irreducible unitary representation : s -> U(s) and

W5)(5)} = (11.6)

for any two inequivalent irreducible unitary representations
s -> U(s), s -> U'(s). Tlie components of one or more inequivalent
irreducible unitary representations constitute a unitary-orthogonal
set of functions on the group manifold.

It follows from these fundamental orthogonality relations

that the components u ik(s) ) u'^s), are linearly independent.
Since the number of linearly independent functions of an argu-
ment s which assumes but h values cannot be greater than h

we must have

g
z + g'

2 + ^ h.
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On the left-hand side of this equation occur the squares of the

degrees of any inequivalent irreducible representation of Q.

We obtain the orthogonality properties of the characters

by writing k = i, K = t in (11.5), (11.6) and summing over

these indices :

Any primitive character satisfies the equation

and the characters x(s )> x'(s ) f any ^wo inequivalent irreducible

representations satisfy

{X'(*)X(*)}
= 0. (11.7')

The primitive characters of inequivalent representations constitute

a normal orthogonal set of functions. They are consequently

linearly independent, and from this follow all the consequences
discussed in the previous section. In particular, a representation
of Q can be unambiguously described by its character, no dis-

tinction being made between equivalent representations. The
number of times m the irreducible x occurs in the representation
X is, following (9.3), given by

m = &{X(s)x(s)}, (11.8)

and we have

This last equation offers a simple criterion for the irreducibility
of a given representation in terms of its character x it is neces-

sary and sufficient that the mean value of x\ = X
2 which is in

any case integral be unity.
Since the characters are class functions we are in dealing

with them concerned with an argument which runs through
the K different classes of g ;

there can therefore be no more
than K linearly independent class functions. Hence a finite

group can have no more inequivalent irreducible representations
than classes.

Whereas the general concept of a representation seemed at

first to open up limitless possibilities, we now see that all

representations are constructed from primitive ones and that

the number of possible primitive representations is confined

within narrow limits. The further content of the general theory
of representations can be stated in the theorem that the sets of

functions, the orthogonality of which we have shown above, are

complete orthogonal systems. The primitive characters con-

stitute a complete orthogonal system in the domain of class

functions, i.e. there exist exactly K inequivalent irreducible

representations. The components of a complete system of K
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inequivalent irreducible representations constitute a complete

orthogonal system for the totality of functions defined on the

group manifold, or

h = g
2 + g'

z + -,

where the sum on the right is extended over such a complete

system and g, #','' are the dimensionalities of the individual

irreducible representations.

12. Extension to Closed Continuous Groups
The theory developed in the preceding sections cannot be

extended to arbitrary groups, but it is applicable mutatis

mutandis to a group whose elements constitute a continuous

closed manifold of a finite number of dimensions. Just as the

immediate neighbourhood of a point on a surface constitutes

a plane, so the immediate neighbourhood of a point /> on an

r-dimensional continuous manifold constitutes an r-dimensional

linear manifold and the line elements from pQ to neighbouring

points p define an r-dimensional linear vector space. We
assume that the infinitesimal elements of our group g (i.e. those

elements in the neighbourhood of the unit element I), or rather

the infinitesimal vectors leading to them from I, constitute

such an r-dimensional vector space, the
"
tangential space

"

to Q at I. The concept of an infinitesimal rotation will be

familiar to the reader from the kinematics of rigid bodies, as

well as the fact that these infinitesimal rotations in 3-dimen-

sional space constitute a 3-dimensional linear family in n-dimen-

sional space an [n(n l)/2]-dimensional family. The multiplica-
tion of two infinitesimal elements of the group is then expressed

by the addition of the corresponding vectorial line elements in

the tangential space.
A parallelepiped which will serve as a volume element in

the neighbourhood of I is defined by r linearly independent
line elements, and its volume is given as usual by the absolute

value of the determinant of the components of these r vectors.

This volume element is, of course, not entirely independent of

the choice of a co-ordinate system in the tangential space, but

the transformation to a new co-ordinate system only multiplies
the volumes of all such elemental volumes in the neighbourhood
of I by a constant numerical factor. These volumes are there-

fore determined to within the choice of a unit of measure
;
more

than this we can hardly require.
On extending the theory developed in the preceding section

to continuous groups integration replaces su nmation, and it is

therefore necessary to be able to measure volumes on the entire
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group manifold of g. With the aid of the foregoing volume
elements in the neighbourhood of I can be measured and com-

pared immediately with each other, and the same is true for

the volume elements at any other point of the group manifold.

The only difficulty lies in carrying the unit of volume from the

point I to any other point a. Examination of the argument
of 11 reveals that the measurement of volume must have the

following invariantive properties : the volume of an arbitrary
element must be unaltered by a left-translation of the group
manifold which transforms the general element t into r ==- at.

But this requirement just suffices to specify the process uniquely.
Consider the volume element at a which arises from an elemental

volume at I by the left-translation which throws I into a
; per

definitioyiem the volumes of these two elements shall be the same.

On carrying the volume element from a to b by means of the

translation t' (ba~
l

}t the equation t
f == b(a~

l
t]
shows that with

this definition of volume the volumes of the elements so obtained

at a and b are equal.
We further assume that our continuous group manifold is

closed in the sense, for example, that the surface of a sphere
is a closed manifold in contrast with a Euclidean plane, which
is open. This guarantees that we shall be able to integrate
continuous functions of position on the group manifold over the

entire manifold. We now choose the unit of volume in such a

way that the volume of the entire manifold g is 1
;

the integrals
arc then mean values. We naturally require that the components
of U(s) in a representation s -> U(s) are continuous functions

of the element s of g. The laws (11.5), (11.6), (11.7), (11.7')

and all consequences obtained 'from them in 1 1 are then valid

for irreducible representations of the continuous group g and their

characters *

The theory would be extraordinarily restricted if the measure

of volume, which we have introduced in such a way that it is

invariant under left- translations, were not automatically invariant

under (1) right-handed translations : $->$' = sa and (2) inversion :

s -> s' = s~ l
. The first of these properties will be established

by showing that the volume of a volume element at I is unchanged
on taking it to a by a left-translation and returning it to I by a

right-translation. Obviously each infinitesimal element 8s of

the group then undergoes the linear transformation A :

8s -> 8's = a 8s a '*,

i.e. the conjugation I* associated with the element a. Such

linear transformations in the r-dimensional vector-space of the
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infinitesimal elements of the group constitute a representation
a ~> A of the abstract group 9. Since Q is closed, each A must be
"
absolute-unimodular" i.e. the determinant of A must have the

absolute value 1
;
and this in turn allows us to conclude that

the definition of transportation of volumes by either left- or

right-translations leads to the same result. To prove this

consider the element a and its powers a2
,
a8

,
. Since the

group manifold g is closed, the infinite set a, a2
,
a 3

,
on Q

possesses a point of condensation b, i.e. an infinite set of ex-

ponents n can be found such that as n runs through this set

an converges to b. To the elements an and b correspond the

conjugations An and B, respectively, and in virtue of the con-

tinuity assumed above det (A
n
) converges to det (B) as n runs

through the chosen set. Now since det (B) is a finite non-

vanishing number, and since, if the absolute value of the deter-

minant of A differed from 1, det (A
n
)
would tend toward or oo,

we may conclude the truth of the above assertion. This also

enables us to prove the truth of (2), invariance under inversion.

For inversion sends the element 8s at I into 8s, and this

transformation is absolute-unimodular. Now send one of two
inverse volume elements at I to a by a left-translation and
the other to ar 1

by a right-translation ;
we thus obtain volume

elements at a and a~ l which go into each other by the inversion

s->s'~s~ l
. Since both left- and right-translations conserve

volumes, these two volume elements have the same volume.

Examples of the Orthogonality Properties

We have already found the primitive characters for the

group of rotations b2 of a circle into itself : e(nuf>), m = 0, 1,

2, ,
where

(f>
is the angle of rotation. They constitute,

in fact, a unitary-orthogonal set of functions :

i (m * m')'

If there existed further irreducible representations their char-

acters would necessarily be orthogonal to all of these
;
but this

is impossible, for the functions e(m<f>), where m takes on all

integral values, already constitute a complete orthogonal

system. We have, however, already shown by a more direct

method
( 8), which did not involve Parseval's equation, that

the system of primitive characters e(m(f>) was complete. It is

therefore natural to consider Parseval's equation as the simplest
case of the general group-theoretic completeness theorem men-
tioned in 11.
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The character of the representation (y of the 2-dimensional

unitary unimodular group u = U2 is given by (9.6). Writing

e = e(u)) y
A = e e" 1 = 2t sin o>, AAako = da,

we have

-

This leads us to suspect that da is the volume of that portion
of the group manifold occupied by those elements a of the group
whose angles of rotation lie between a> and a> -f- dw. [The
total volume of the group manifold is then

=
1-]

u

If this is correct, (12.1) are the orthogonality relations predicted

by the general theory, and the equation

1 _.

defines the density of the various classes of the group. In the

last chapter we shall actually carry through the determination

of volume and verify these results.

If there were yet another irreducible representation, with

character x, then = A x would be an odd periodic function

of w with period 2?r which would be orthogonal to all the functions

f A Xfj i- c - to the functions

sin w, sin 2co, sin 3co, .

But these latter are already a complete orthogonal set for

the domain of odd periodic functions, and consequently the

(5y (/= 0, 1, 2, )
constitute a complete system of irreducible

representations of the group U. A direct proof, which is inde-

pendent of Parseval's equation, is also to be found in Chap. V,
16 indeed, it is there carried through for u n in an arbitrary

number n of dimensions.

The Clebsch-Gordan series

XfXff
= Xf*a + Xf*ff-2+

' * + X\f-9\ (
12 - 2

)

for the characters Xf ' s readily verified. If we know on general

grounds that the character of a representation specifies it uniquely,
this equation can be used as a proof of the reducibility of/ X a

into irreducible components with characters as on the right.

Since the characters are much more readily handled than the
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representations themselves this principle offers a very powerful
method for obtaining assertions concerning representations.
Let / 5: g and multiply equation (12.2), which is to be verified,

by A:

The product of

(f = 6/+ 1 ~</ 41 ) with Xo = & + &~ 2 + ' ' ' +
is the difference of two sums

;
the one is

the exponent decreasing by 2 from term to term, and the other

is obtained from this one by replacing all exponents by their

negative. Hence the product is in fact

v=f+g,f+g-2, - ;f-g.
The representations (/", (/" (/ 0, 1, 2, )

constitute a

complete set of inequivalent irreducible representations of the

augmented group Uo. To establish this we first note that in an

irreducible representation of u' the matrix associated with the

element i must be a multiple of the unit matrix, for it commutes
with the irreducible system of matrices constituting the repre-
sentation. Furthermore, u = I, so this matrix can only be

+ 1 or 1. Since the matrix associated with c is a multiple
of the unit matrix, and since the extension of U to u

1

involves

the addition of a single element i, the representation must remain

irreducible on restricting the group il' to the sub-group U. Hence

every irreducible representation of 112 is obtained by supplement-

ing the irreducible representations of it2 by the association

t-> + 1 or t-> 1.

If
>

'

run independently through complete systems of

inequivalent irreducible representations of the two (finite or

closed continuous) groups g, g', respectively, then the X '

constitute a complete system of inequivalent irreducible rep-
resentations for the direct product g X g'. To prove this we
note that since the primitive characters %(s) of g constitute a

complete orthogonal system for class functions of the element s

which runs through g and the primitive characters x'GO f
fl'

do the same for g', the totality of the products x(s)

'

x(s
')

con "

stitute a complete orthogonal system for the class functions of

the element (5, 5') which runs through the group g X g'.

The representations (/, introduced in 5 constitute a com-

plete system of irreducible representations of C2 when /, g run
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independently through the numbers 0, 1, 2, ;
we here

only mention this fact without going further into it.

13. The Algebra of a Group

We return for the present to finite groups. In order to be
able to express the completeness theorem we associate with
each function x(s) on the group manifold of the finite group g
its

4<
Fourier coefficient matrix/' the group matrix.

X = Zx(s)U(s), (13.1)
g

where ,) : s -> U(s) is a representation of g. The trace of X,

is the Fourier coefficient of x(s) with respect to the character

x(s) of $3. It is here desirable to consider the function x(s) as

a single quantity x in the group domain ; each element s of the

group is a dimension in
44

group space
"

and the number x(s)

is the ^-component of the quantity x. We may express the

quantities themselves symbolically in the form

x = Zx(s) s. (13.3)
*

The matrix X is associated with the quantity x in the repre-

sentation ) : x -> X in x Addition of
44

group quantifies
"
and

multiplication of them by a number are introduced in the usual

way \x-\-y has the components x(s] + y(s] and ax the com-

ponents a x(s). Group quantities consequently behave like

vectors in an /^-dimensional space, where h is the order of the

group. The following definition of multiplication of two arbitrary

group quantities x and y is suggested by (13.3) :

z - xy - x(t)y(t')tt'
-

s(s) s
t, r *

where

This last equation, in which the sum is to be extended over all

pairs of elements /, /' whose product is s, defines the product z

of the quantities x and y. We denote this product by xy and its

components by xy(s) ;
this is not to be confused with x(s) y(s),

the ordinary product of the two numbers x(s), y(s). Addition

and multiplication of group quantities parallel addition and
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multiplication of the group matrices associated with them by
(13.1). Indeed, the product of

X = Zx(s)U(s), Y = Zy(s)U(s)
9 t

is given by
Z = XY = x(t)y(t')U(tt')

= Zz(s)U(s),
t>t'

where z(s) is defined by (13.4)
The operations to which the group quantities may be sub-

jected : (1) addition, (2) multiplication with a number, and (3)

multiplication with one another, satisfy the usual laws of

ordinary algebra with two important exceptions : multiplication
is not commutative and division is not in general possible, i.e. the

equation ax b for given a =f= and b may have no unique
solution or even no solution at all. But there does exist a

quantity 1 having the properties of unity : la = ai = a for

every quantity a
;

its components all vanish with the exception
of the one associated with s = I, which is 1. A domain of

quantities as described above is called an algebra,
9 and the

44

group quantities
"

are the elements of the algebra ; care must
be taken not to confuse these with the elements of the group

(cf. V, 5). The association x -> X in the representation $$

satisfies the conditions :

1. 1 -> 1, to the element 1 corresponds the unit matrix 1
;

2. if x -> X
y y -> Y and a is a number, then

x+y-+X+Y, <xx->aX, xy-*XY.
A representation of the group is the same as a realization or
"
representation

"
of the algebra of the group by matrices such

that these conditions are satisfied. Actually all we have done
here is this : we have gone over from the matrices U(s) associ-

ated with the individual elements of the group to the linear

manifold of matrices for which they constitute a basis.

What characterizes an element a of the algebra whose com-

ponents a(s) define a class function ? We have in general

ax(s)
=

a(st)x(r
l
), xa(s)

= 2a(ts)x(r
l
),

t t

and a class function satisfies the equation

a(st)
=

a(ts).

Hence such an a is characterized by the fact that it commutes
with all elements x 'of the algebra : ax = xa. Employing a

term carried over from group theory to algebra we may say :

those elements whose components depend only on the class of
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conjugate group elements to which the argument s belongs constitute

the central of the algebra.
We are interested only in unitary representations s -> U(s).

For such a representation the Hermitian conjugate of (13.1) is

X = Zx(s)0(s) = Zx(s)U(s-i) = Zx(s-i)U(s).
* g

Hence on defining the conjugated of the element x by x(s}~x(s"
1

),

Hermitian conjugate matrices are associated with conjugate
elements in a unitary representation ;

this characterizes unitary

representations. An element will be said to be real if it coin-

cides with its conjugate. We have seen that the character

x(s) of a unitary representation satisfies this condition

*(*)
= xM.
Let be a ^-dimensional irreducible unitary representation

of Q. C
H^tfcll being a given g-dimensional matrix, the element

c of the algebra defined by

is such that c -> C in
;

this is readily verified with the aid of

the orthogonality relations. Hence in the correspondence x -> X
X runs through all g-dimensional matrices. We denote the

o

quantity with components J>
n tk (s) by e lk . The set H of all

elements of the form

where the coefficients c tk are arbitrary, is naturally closed with

respect to the operations of addition and multiplication by a

number. But the product of two elements in H is again an

element in H
; indeed, if c is in H and x is an arbitrary element

of the algebra both ex and xc are also in H. We express this

situation in a terminology paralleling that of the theory of groups :

H is an invariant sub-algebra of the algebra F of all group quantities.

To prove these assertions we first note that the definition (13.1),

together with the condition that s -> U(s) be a representation

yields the equation

or, on replacing U(s~
l
) by U(s),

XU(s) - U(sr
l

)x(t). (13.5)
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Multiplying on the left by C = \\cik \\
and constructing the trace

we find

f tr [(CX) U(s)}
= c(sr

l

}x(t]
=

cx(s),
n i

whence y = ex is in H :

ex = y v c- (136)
i, *

and the matrix

\\yik \\
= CX. (13.7)

In the same way we can show that if c belongs to H then xc
does also. If

we call

the component of x in H. In accordance with (13.6), (13.7) this

component is the product of x with

it is ex = AT8. e is a real element belonging to the central of the
a

group algebra F, with components ^ x(s) ;
it is

"
idempotent"

i.e. it satisfies the equation 66 = 6. In particular, the product
of two elements

a = 2X* ifc,
b = Zbi k eik

of H with coefficient matrices A, B, is the quantity ab in H
with the coefficient matrix AB. 6 is the 1, the

" modulus" or
44

principal unit" of the sub-algebra H since X XB ~ x when
AT is in H. The algebra H is identical with the algebra of all

g-dimensional matrices (" simple matric algebra "). The "
units

"

eik satisfy the equations

e ir e rk
= eik ,

eir eak
= for r 4= 5. (13.8)

The central of the sub-algebra H consists only of the multiples
of its modulus e.

An irreducible representation
'

: s -> U'(s)
=

|| u(K (s) ||
of

dimensionality g' which is not equivalent to yields another
invariant sub-algebra H' consisting of all elements of the form

I, K
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The components of e[K are
j-u[K (s}.

It follows from the

orthogonality relations existing between inequivalent repre-
sentations that c' ~> in the representation . If c is in H,

then, by applying (13.6) for x = c', cc
f = y is also, but since

then X =
(13.7) yields y = ;

the two sub-algebras are

independent in the sense that the product of an element in one

with an element in the other is always 0. Hence the
"
units

"

satisfy

,*;. = 0. (13.9)

The modulus

f - 2X,

of H' satisfies es' = 8'e = in addition to e'e' = e'.

If a(s) is a class function, a belongs to the central of F and
if B -> A in the g-dimensional irreducible representation
then the matrix A commutes with all matrices X. Hence A

is a multiple of the unit matrix : A = - 1. By (13.2) we find
o

that the trace a of A is
*

In this way the entire theory of representations can be

translated into the language of modern algebra. This leads to

a greater freedom of operation and is preferable for the expression
of the completeness theorem. The orthogonality relations

between u lk (s) }
u'M (s),

* lead to Bessel's inequality

g
' tr (XX) H

..... < h Zx(s)x(s), (13.10)
8

where X in the sum on the left is the matrix (13.1) associated

with x(s) in the ^-dimensional irreducible representation ,S;>
and

the sum is taken over any set of inequivalent irreducible repre-
sentations ),. This inequality is obtained by expressing
the fact that the mean value of z(s) z(s) is non-negative (cf. I, 7),

where z is that element obtained from x on subtracting from x
its components in H, :

* = x - (x tk e ik + )
- x - (xe+)

Since the characters constitute an orthogonal system we also

have the Bessel inequality

& + <h-Zx(s)(s) (13.11)
S

* Cf. also Appendix 2 at the end of the book.
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where is defined by (13.2). The completeness theorem asserts

that in both cases the equality sign holds when the sum is extended

over a complete system of inequivalent irreducible representations ,

where in (13.10) x(s) is any function on the group manifold and
in (13.11) any class function. The second relation is a special

case of the first, since for class functions X = - 1.

o

If the abstract group is a finite continuous group which
is closed in the sense of 12, instead of a finite group as above,
the sums must be replaced by integrals ;

the measure of volume
on the group manifold is introduced as in 12. We then have
in place of (13.1), (13.4):

X=

xy(s)
=

The modulus 1 of the algebra must have as components the

values of a function l(s) which vanishes everywhere on the

group manifold except at the point s = I and must there be

so large that fl(s)ds= 1. Such a function does not exist, but

we can construct functions approximating these conditions

arbitrarily close.

The completeness relations assert that any element x of

the algebra of a finite group Q is the sum of its components in

the totality of sub-algebras associated with a complete system
of inequivalent irreducible representations. The group algebra
F is thus reduced to a set of independent simple matric algebras.
It suffices to prove this theorem for x = 1 :

1 = + ' + .=
(en + + e f ,) + * *

, (13.12)

for on multiplying this by x it follows for all elements x. These

assertions cannot be carried over to continuous groups in the

form here stated; we must hold to the formulation (13.10)

(with = instead of ^) containing an arbitrary function x(s).

We go into the proof of these results in Chap. V, where all

the results of this section will be derived anew and discussed in

detail from another more profound point of view.

14. Invariants and Covariants

We first discuss briefly the classical concept of an invariant.

Consider, for example, the group c = C2 of homogeneous linear

transformations of two variables f, 77
with unit determinant.

Let

a? + Zbfr + erf
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be an arbitrary quadratic form in the two variables. The
"
discriminant

"
ac b2

is an invariant, for the discriminants

of two forms which are such that either goes into the other on

transforming , 77 by some element of c have the same value.

We may have, instead of one arbitrary quadratic form, one or

more arbitrary forms /, <f>,
of given orders, n, v, . An

invariant is a rational integral function / of the coefficients of

these forms which is homogeneous in the coefficients of each of

the forms /, <f>,
and which has the same value on replacing

these coefficients by the coefficients of the forms /', <', into

which /, <, are transformed by an arbitrary transformation

o of C affecting the variables
, 77.

The coefficients #
,
a lf ,

an of an arbitrary form of order

n in the variables
, 77 undergo a certain linear transformation

on subjecting the variables to a transformation a of c, and the

correspondence between a and this transformation constitutes

a representation of the group C. The same is true for the totality
of monomials

aXi1 ' < (rc + r, + + rn - r)

of order r in these coefficients. A homogeneous polynomial
/ of order r in the a,- is a linear combination of these monomials.
We thus see that if / is of given degrees r, p, in the coefficients

of the arbitrary forms /,</>, it is a linear combination of

quantities which constitute the substratum of a definite re-

presentation of c
;

this representation is known as soon as we
have given the orders n, v

}
of the forms /, <, in the

variables
, 77

and the degrees r, />,
of the invariant / in the

arbitrary coefficients of/, <, . Discarding the all too special
formal algebraic assumptions involved in the

"
classical

"

concept of an invariant, and which the theory of invariants has

from the beginning attempted to outgrow by generalizations in

various directions, we may express the concept in modern

group-theoretic language as follows :

Lei Jp : s ~> U(s) be a given representation of an abstract group

Q in an n-dimensional representation space 9R with variables x
i ;

a linear jarm in the x
i
is said to be an invariant in the representation

space 9R of ^ if it is unchanged under all the transformations U(s).

If /lf
72 ,

are invariants in the representation space of ^),

then any linear combination oc^ + a8/2 + of them with

constant coefficients ax ,
a2 ,

is also an invariant. The most

important problem arising here is naturally that concerning the

number m of linearly independent invariants in the given

representation space. If y l} y2 >

* * *

y constitute such a com-

plete set of linearly independent invariants, and if we choose as
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co-ordinates in 9ft these m quantities and n m further linear

forms ymTl , , y n such that the two sets together constitute

a complete system of linearly independent linear forms in 9t,

the transformation U(s) is, in terms of the variables y,

y\

4-

yn .

If we are dealing with a unitary representation the y's can be so

chosen that they define a normal co-ordinate system ;
is

then reduced into m times the 1-dimensional identical repre-
sentation y'

= y and an (n m)-dimensional representation.
Hence the problem of finding the number of linearly independent
invariants in the representation space 9ft reduces to finding how
often the identical representation with the character 1 is con-

tained in the given . But by formula (11.8) the solution of

this problem is given by

}, (H.I)

or : the mean value of the character x of ,), which is always a

non-negative integer, gives the number of linearly independent
invariants in the representation space of'.

The formula (14.1) answers the principal question arising
in the linear invariant theory, and we now proceed to an ex-

tremely brief discussion of the algebraic invariant theory. Let

> >

" * '
t>e representations of the same abstract group Q in

the spaces with variables x
ly y ky . We consider rational

integral functions /(#,-, y k , )
which are homogeneous in the

variables x
it homogeneous in the variables y ky etc. If on sub-

jecting x, y, to those linear transformations corresponding
to the same arbitrary group element 5 in the representations,,/ remains unchanged, then it is said to be a rational

integral invariant of the system [, ,''] of representations.
If the orders p, q, of the function / in the variables x it y k ,

are given, the problem reduces to the one discussed above
;

for the monomials in these variables which are homogeneous
of order p in the x

i9 homogeneous of order q in the y ky con-

stitute the substratum of a representation obtained in a certain

way from ,, . But if we consider simultaneously in-

variants of all possible orders belonging to the system [, ),**]
we are confronted with new problems. The most important of

these, which is answered in the affirmative by the so-called
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fundamental theorem of the theory of invariants is : Do there

exist a finite number of invariants such that all others can be

expressed rationally and integrally in terms of them ? This
involves the question of algebraic, rather than linear, dependence
between the invariants. We only mention this higher branch
of the theory of invariants, and do not go into it further, as it

bears no direct relation to quantum mechanics. 10

In addition to invariants or scalars, covariant linear

quantities, such as vectors and tensors, play an important
role in physics. Let g be the group of all linear transformations

between the normal co-ordinate systems in space or in space-

time, e.g. the 3-dimensional group of Euclidean rotations or

the group of Lorentz transformations, and let Jp : 5 -
17(5) be

an n-dimensional representation of g. A covariant quantity of
kind Jp /5 ayi entity having n components a,, a 2 ,

' '

*, a n relative

to any given co-ordinate system for the variables of the transforma-
tion group g and which is such that on going over to a new co-

ordinate system by means of the transformation s of g tlie new

components a
t

are obtained from the old by the corresponding

transformation U(s] of ). If $$ is irreducible such a quantity
is said to be primitive or simple. Physical quantities are generally

simple. Thus, for example, the entity whose components are

the electro-magnetic field strengths in the 4-dimensional world

is described as an "
anti-symmetric tensor of order 2

"
rather

than merely as a
44

tensor of order 2
"

;
we shall see in Chap. V,

4, that it is therefore a simple quantity. The reduction of

a representation into its irreducible constituents implies the

reduction of the corresponding kind of quantities into simple

quantities. It would appear that the only simple quantities
with which we deal are tensors which are characterized by
certain symmetry conditions in addition to their order. We
shall prove this theorem for the complete linear group C and for

its unitary sub-group ll in Chap. V
;

it asserts that all repre-
sentations of c (or ll)

can be obtained by reduction from the

powers c, (c)
2

, (c)
3

,
and that the irreducible constituents

of
(c)-f

arc obtained by imposing certain symmetry conditions.

We must accordingly generalize the problem of the linear

theory of invariants in the following manner. Consider two

unitary representations f)
: a -> s

}
) : a -> 5 of the abstract

group g with elements a
;

let their dimensionalities be n, N
and let

f)
be irreducible. We wish to determine all covariant

quantities of kind
t)

in the representation space of r Calling the

variables in this representation space x
l ,

which undergo the

transformation S under the influence of a, such a quantity
/ has n components I

lt
7 2 , ,/, which are linearly independent
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linear forms in the variables xt . When the xi undergo the trans-

formation 5 the n linear forms / go over into new ones which
are obtained from the 7a (in which the variables K i have been

transformed in accordance with S) by means of the transforma-

tion s of
t).

If there exist two or more covariant quantities

/ = (/i, /, , U /' = (/' 4 ; O,
of the kind

1)
in the representation space of

,
then any linear

combination a/ + a'/' -)- with constant coefficients a is

again a quantity of the same kind. We ask for the number m
of linearly independent quantities of this kind. The answer is

that m is equal to the number of times the irreducible representation

f)
is contained in . Hence if #, X are the characters of

f), ,

we have

m = {X(*)jfr)}. (H.2)

In order to prove this statement we choose the co-ordinate

system x
t
in the representation space of in such a way that

the matrices of Jp are reduced into their irreducible constituent

sub-matrices, the m representations t)
:

I)'
=

!)"
=

f)
(m) =

t)

being separated out first. The remaining constituents
I)
(m+1

\

are inequivalent to
t).

Denote the variables in the corre-

sponding invariant sub-spaces by

The matrix S is completely reduced into the sub-matrices

s' =.s, ,
5(m) = s

;
5(mfl)

, arranged along the principal

diagonal. Let

be a covariant quantity of the kind
I).

We can write this in the

form y = Ax in terms of the column % of the A^ variables x
t ,

the column y of the n variables ya and the matrix A =
||0t||-

The requirement that / be a quantity of kind
I)
means that

when x is replaced by x
f = Sx, y goes over into y

1 =
sy, or

sy = ASx, sAx ASx, sA = AS. (14.3)

Corresponding to the reduction of #-space into irreducible

sub-spaces, the matrix A of the correspondence of %-space on

y-space is reduced into matrices A', ,
A^m)

;
A(m * 1}

,

consisting of the first n rows, ,
the mtb set of n rows, ,

of A. Equation (14.3) then becomes

SA' = A'S,
'

',
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It follows from the fundamental theorem (10.5) on representa-
tions that A', ,

AM are all multiples of the n-dimensional
unit matrix and that the remaining A(m+l

\ are all zero.

But this is just our assertion that y = (y lt y 2l , y n)
is a

linear combination of the m quantities

_x

r(m) _ /r(m) (m) . . . r(m)\,T [X l ,
#2 , ,

Xn )

of the kind
f).

15, Remarks on Lie's Theory of Continuous Groups
of Transformations

In 12 we made use of the concept of infinitesimal elements

of a group in order to establish a method of measuring volume
on a continuous group manifold. We here discuss this concept
in detail for the 3-dimensional group b of rotations in Euclidean

space.
11 This group serves to describe the mobility of a body

in Euclidean space, one point of which is fixed in space. Each

possible position of the body can be considered as arising from

any given initial position by an operation of b. A material

substance distributed throughout the space or any portion of

it moves as a rigid body about if the position of each of its

elements at a given moment is associated with its initial position

by means of a correspondence belonging to b. This is the

description of the motion of such a rigid body which compares
the position in any moment directly with the initial position,

ignoring the intermediate states which it has assumed in going
from the one into the other. But it seems more natural to

consider it in terms of a continuous motion in which the position
of the body undergoes an infinitesimal rotation from moment
to moment, so that the motion as a whole is the integration
of a series of infinitesimal operations of b. On employing an

auxiliary variable t in order to avoid the use of infinitesimals

and thinking of this parameter as time, the velocity field

dx = x, dy = y, dz = z of an infinitesimal rotation is defined

by [cf. I, 6]

dx = bz cy, dy = ex az, dz ay bx, (15.1)

where the constants a, &, c are independent of position (x t y, 2).

These velocity fields, which obviously constitute a 3-dimensional

linear manifold, are the infinitesimal elements of b
; they are

the
"
vectors

"
which define the linear space tangent to the group
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manifold at the point which represents the unit element I.

The continuous motion of a rigid body about is characterized

by the fact that at each moment its velocity field belongs to

the 3-parametcr linear family (15.1). We may take as a l3asis

of this family the three elements DXJ Dy ,
D z obtained by choosing

a = 1, b = 0, c =
;
a = 0, b - 1, c =

;
a = 0, b = 0, c = I.

We call these
l<
the infinitesimal rotations about the #-, y- and

s-axes." S. Lie was the first to undertake a systematic study
of the construction of transformation groups from their in-

finitesimal elements. In fact, once they are known all the

substitutions of the continuous group can be generated by
integration, i.e. by successive application of such infinitesimal

elements at least, all those which belong to the same connected
"
sheet

"
as the identity. (Example : the proper orthogonal

transformations can be obtained from the infinitesimal ones,
but not the improper transformations with determinant -

1).

In general, consider a continuous r-parameter transformation

group ,
and let the group manifold be described in terms of

the parameters s
1 ,

S 2 , ,
s r in the neighbourhood of the unit

point, at which they vanish. A portion of the group manifold

is thereby mapped in a one-to-one continuous manner on a

neighbourhood of the origin in the r-dimensional number space
of the parameters s. Let the u-dimensional point-field of the

transformations be described in terms of co-ordinates ;q, % 2 , ,
x n

in the neighbourhood of the point under consideration, and let

the correspondence #->#':

be associated with the element (s lt
s 2 ,

' '

',
s
r)

of the abstract

group in its realization by the transformation group. The
infinitesimal transformation x > % -f- dx obtained by assigning
the infinitesimal increments ds to the parameters s in the neigh-
bourhood of s is given by

the parentheses indicate that the differential quotients are to

be computed for s =
0, ,

s r 0. We postulate a material

substance which fills the point-field and which is capable of

executing those and only those motions in which the positions
of its elements at an arbitrary moment t' are obtained from their

positions at time t by a transformation of . Again its motion

can be more simply described as the result of successive deforma-
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tions corresponding to infinitesimal operations (15.2) of our

group ;
the velocity field must at any time have the form

where or,, ,
a r are constants independent of position. This

r-dimensional linear family constitutes the infinitesimal group of
motions of our substance. It is to be observed that the application
of these infinitesimal processes to our transformation group
presupposes that the functions

</>,
are differentiate with respect

to s at the point s 0. In the theory of abstract groups the

point-field is the group manifold itself and we take as a realization

(left-)translation. In the neighbourhood of the unit element

s = 0, t = we have, as law of composition,

The introduction of a measure of volume in 12 presupposes
that the functions

ifj are, for sufficiently small /, differentiable

with respect to the 5 at the point s 0, and that for sufficiently
small ^ they are differentiable with respect to t at / 0.

The composition of infinitesimal elements of the group is

expressed by addition of the parameters a introduced by (15.3).

It might therefore appear as if the infinitesimal elements of an

r-pararneter continuous group need satisfy no condition other

than that they constitute a linear family. However, that is

not the case
;

there are further
*'

iniegrability conditions
M

to

be satisfied. The example of a sphere which rolls without

slipping on a horizontal table shows that the possible positions
of a body whose infinitesimal motions have but three degrees
of freedom can nevertheless constitute a 5-dimensional manifold.

The integrability conditions we are seeking, which involve

second order derivatives, guarantee that this situation does not

arise. We obtain these conditions on expressing the fact that

the commutator sts~~
lr l of two infinitesimal elements s, t of the

group also is an element of the group. This commutator con-

verges to 1 as approaches the unit element I, whatever t may
be, and similarly as t -> I for arbitrary s. The commutator of

the two infinitesimal linear correspondences A and B :

dx - Ax, d'x - Ex

is the infinitesimal correspondence AB BA
;

to show this

we note that the equation

A(s)B(/)
-

r(s,
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leads, on writing

,. r(s, t)
- i

urn

to the equation

,'
* \as at/

gt t =

C= AB - BA.

Our main purpose in mentioning these matters is to prepare
the ground for an understanding from general principles of the

commutation rules satisfied by the three infinitesimal rotations

D x> Dy ,
D z :

. (15.4)

(15.5)

They are, as is readily shown,

DX Dy DyDx =i
D Z DX D Z

-
Dy. "}

We could, of course, take the unimodular unitary group U 2

in two dimensions as fundamental, instead of the group b3 of

rotations. We denote the two variables which undergo the

transformations a of the unitary group by , 77
as in 8. In

consequence of the correspondence a -> s, which was established

there by means of a stereographic projection, the 3-dimensional

rotation group now appears as a representation of U 2 . We can

take as a basis for the 3-parameter linear manifold of infinitesimal

operators of U 2 the three particular operators

I

l_

2t

here, in agreement with (8.15),

s=||
l s=*

1

' *
,'

\f-
I

(15.6)

I

-1

They are the infinitesimal transformations of U 2 corresponding
to the three infinitesimal transformations Dx ,

Dy,
D z of b 3 in
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virtue of the correspondence a -> 5
;

that this is in fact the case

is readily seen from (8.10) or

x --

Given any representation > : a ->
C7(<r) of U 2 ,

its infinitesimal

operators with matrices

I

corresponding to the infinitesimal operators (15.6) in U 2

satisfy the same equations (15.5) as the Z),, D yi
D z :

M x My
-~

A/yA/j,
--= iiM Zj . (15.7)

The matrices Mx ,
A/

v ,

M z are of course Hermitian. For reasons

which will appear in the following chapter we call these the

components of moment of momentum (or angular momentum] 9)i

of the representation )p, and

9H 2 - A/ 2 - A/; + A/; + A/;

the square of the magnitude of the moment of momentum. If

Jp, )' are two representations with angular momenta 9JJ, 3Jt'

then, in accordance with the general formula II, (10.4), which

governs the composition of infinitesimal operators by X -multi-

plication, the representation <p X )' has as moment of momentum

(3R x 1) + (1 x fflO-

We next calculate the moment of momentum 9)t,- of the

irreducible representation (/ ~-
X,- (j

=
//2) of H 2 . It will be

found more convenient to employ in place of ^-Sxt -T--^V the
f

2 ; 2 2
y

transformations

1
]

1

'

(
15 - 8)

2 J

In general

d(
r

r)

8

)
= r g

r~ l
rj

5
d^ + s r

rj

s " 1

drj,

and on substituting in this the variables

\ / . / ii ~~i V '
*

' '
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of the representation space of $>,, we find that the three infinitesi-

mal transformations of U 2 defined by (15.6), (15.8) induce in this

space the transformations

2 (5, + iSy)
: dx(m) = Vr(s + 1) x(m - 1)

~ V(j + m)(j m -f- 1) #(w 1),

j

o (5X i5) : rf^(w)
= \A(r + 1) x(m + 1)^

= V(j -m)(j + m+ 1) *(m + 1),

S7 / \ / \ / \

CLTC\'YYl]
" - Xdfl)

~~~ Wl %\'YYL\

Hence

(m, m - 1)
-

(j + w)(y
- m + 1),

(m, w + 1)
= V(j - m)(j + m~+~Ti, \ (15.9)

M f (m, m) = m.
j

All other components (m, m') vanish. M 2
is a multiple of the

unit matrix in 3^ :

M 1 =
j(] + 1),

for it follows from

(M x + iMv)(M x
- iMy)

= Ml + M*- i(MxMv
- MyMx)

= M\ + Ml + M z

that

M 2 - (Afx + iMy)(M x
- iM v )

- M z + Ml
and from this and (15.9) that

Af2
(m, m) = (j + m)(j w+1) m + m 2 =

j(j + 1).

If on reducing an arbitrary representation the irreducible

representation $),- is found to occur exactly g y times, then M 2

has j(j +1) as a [(2j + l)g,]-fold characteristic number and
M z has the characteristic number m with multiplicity

2fc, (;= |m|, |m| + 1, )

From this we again see that the multiplicity g y with which $),
occurs in the reduction of is uniquely determined by .

These infinitesimal operations can be used to give a relatively

elementary constructive proof of the fact that the 3), are the only
irreducible representation of U 2 .

12

16. Representation by Rotations of Ray Space
In quantum theory the representations take place in system

space ;
but this is to be considered as a ray rather than a vector
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space, for a pure state is represented by a ray rather than a

vector. Two unitary transformations U and ef/ which differ

only by a numerical factor s of absolute magnitude 1 are con-

sequently to be considered as the same, t/~eC7, for they
determine the same rotation of the ray field. In a

"
ray repre-

sentation" which associates with each element 5 of the abstract

group Q a unitary rotation U(s) of the rays of n-dimensional

representation space, the gauge factor e(s) may be taken

arbitrarily for each unitary matrix U(s) ;
if g is a continuous

group we choose it, however, in such a way that U(s) depends
continuously on s. The condition for a representation is now

only

U(s)U(t)~U(st), (16.1)

U(s)U(t) = 8(s,t)U(S t), (16.2)

where 8(s, t)
is a numerical factor, of modulus 1, depending on

5 and /. If by change of gauge U(s) is replaced by &(s)U(s),

8(s, t)
is replaced by

e(st)t-
l

(
s)s-i(t)?>(s, t).

In the equation

defining the connection between the components x(s) of an

element x of the algebra of the group and the group matrix X
which represents it, the x(s) arc also dependent on the gauge
and are sent into z(s)x(s) on the change of gauge defined by
U(s)

L
^e(s}U(s). In order that the multiplication law for two

elements x,y shall, as we require, parallel the multiplication of

the matrices which represent them we must define

xy(s)
= Z8(t,t') X ((}y(t') (16.3)

H'= s

in terms of the chosen gauge. The condition

x(s~
l

)
-

x(s)

for a real element x is only appropriate if the gauge is so chosen

that U(s"
1

)
is the matrix reciprocal to U(s). The algebra of

the group is to be adapted in this way to the ray representation
under consideration, whereas in dealing with

"
vector repre-

sentations
"

it is uniquely determined by the law of composition
of the group alone. 13

Examples.

I. The 1-dimensional representations are now entirely

uninteresting, for any 1-dimensional matrix ~1. But under
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certain circumstances Abelian groups may possess multi-dimen-

sional unitary ray representations, whereas any irreducible

unitary vector representation of an Abelian group is necessarily
of degree 1.

We first investigate the simplest example, a finite cyclical

group (a) of order h, consisting of the elements

I, a, a2
, ,

ah
~ l

(a
h =

I).

Let the element a correspond to the unitary matrix A in the

ray representation ;
then A h = al is necessarily a multiple of

the unit matrix. Since a is of modulus 1 we may change the

gauge in such a way that A goes into Aj'Vcf. ;
then A h = 1

and the correspondence ak -> A k
is a vector representation of

the cyclical group. Hence by introducing an appropriate

change of gauge the ray representation can be made into a

vector representation, 8(5, t) being then 1.

II. The simplest example of an Abelian group which gives
rise to multi-dimensional irreducible ray representations must

consequently be non-cyclic. Consider the group consisting of

the four elements I, #, b, c with the multiplication table

a* = b* = c* - 1,

be cb = a, ca =-- ac = b, ab ba = c.

A ray representation 33 is given by

(16.4)

7(1)
= 1

1
V(a) =

1
U(b) = U(c)

-
I -1
(16.5)

The normalization is here chosen in such a way that

U 2
(a]
- U(a)U(a~

l

)
- 1

and similarly for 1, i, c. The algebra defined by (16.3) for this

representation is non-commutative in spite of the Abelian

nature of the group ;
it is the algebra of complex quaternions.

On denoting the elements of this algebra by

x = K\ + Xa + p.b + vc,

the
u
units

"
1, a, b, c have the same multiplication table as

the corresponding matrices U :

I

(The product xy occupies
the intersection of the

row x with the column y.)
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The "
real

"
quantities are those for which all components

/c, A, /LI,
v are real. Since in the calculus of quaternions 1, fa,

f6, ic are taken as the fundamental units, they are those whose
scalar component K is real and whose vectorial components
A/I, /x/f, v\i are purely imaginary.

III. The group II U 2 of unitary transformations a in two

dimensions with determinant 1. Consider a representation
a -> f/(a) by rotations in n-dirnensional ray space. On changing
the gauge in such a way that U(a) goes into

U(a) : VdrtU(a), (16.6)

the determinant of the new U(a) is 1. The only possible diffi-

culty consists in the fact that the n th root

e(a)
- i/drtTufi) (16.7)

is multiple-valued. It is
"

locally
"

single-valued, i.e. if we
have chosen a definite one S of the n values for the point
a = or

,
we can uniquely determine the root e(o-) in a sufficiently

small neighbourhood of cr in such a way that it depends con-

tinuously on a and goes over into e for a = a . Hence we can

continue the determination of the root for a = CTO in a unique
manner along a path in the group manifold, starting in a .

The only question is whether e(a) returns to its original value

when we allow a to describe a closed path. This is to be answered

hi the affirmative, since the group manifold ofn is simply connected

in the sense that any closed curve can be drawn together into

a point by a continuous deformation. For in accordance with

equation (7.5) the elements of the group are mapped in a one-

to-one continuous manner on the quadruple (K\IJLV} of real numbers
which are subject to the condition

Hence the group manifold has the same topological properties

as a 3-dimensional sphere in 4-dimensional space. These con-

siderations thus show that the nth root (16.7) is broken up into

n single-valued continuous functions over the entire group
manifold. The method of proof here employed, which is of

fundamental importance in the whole of mathematics, is perhaps
best known to the reader in the proof of Cauchy's integral

theorem
;

it follows from the fact that (he integral of an analytic

function is locally single-valued, that it is single-valued in the

large if the region in which we are operating is simply connected.

The result of our topologiral considerations showed that

the formula (16.6) defines n single-valued continuous functions

U(cr). One of them is such that in it U(l) is the unit matrix;
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we henceforth denote it alone by U(a). On writing the equation

U(a)U(r) =8(a, r)U(ar) (16.8)

for r= I, and taking into account the fact that U(\)
=

1, we
find 8(s, I)

= 1. On forming the determinant of both sides of

(16.8) we obtain the equation

1 = [S(a, T)].

8(or, T) is consequently an n th root of unity which depends con-

tinuously on r for fixed a and which reduces to 1 for r I
;

hence it is identically equal to 1, and (16-8) becomes

U(a)U(r) - U(ar).

Consequently the only ray representations of U 2 are also vector

representations, and our considerations show that this theorem is

valid for any continuous group whose elements constitute a simply
connected manifold. On going over to the 3-dimcnsional rotation

group b 3 by stereographic projection, all 2),-, even those with

half-integral y, are single-valued when considered as ray repre-
sentations. Any single-valued continuous ray representation of

b 3 is reducible into irreducible constituents, and the only irre-

ducible ray representations are the 3) ; (j
=

0, 1/2, 1, 3/2, )

obtained earlier in the chapter. But b 3 is not simply connected
;

we must resort to a two-sheeted covering surface, similar to

a Riemannian surface but without cuts or branch points, which
is simply connected. This accounts for the fact that there

exist irreducible ray representations of b 3 which may be single-
or double-valued vector representations, but there cannot exist

multiple-valued representations of higher degree.
I have been able to prove the same theorem for the n-dimen-

sional rotation group (n ^ 3).
14 This means that there exist

two closed continuous motions (i.e. motions which lead back
to the initial state) of a rigid body, which is free to rotate about
a fixed point 0, such that any other closed motion can be con-

tinuously deformed into one of the two. One of these may be
taken as rest, and the other is such that it cannot be continuously
deformed into rest.
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CHAPTER IV

APPLICATION OF THE THEORY OF GROUPS
TO QUANTUM MECHANICS

A. The Rotation Group

1. The Representation Induced in System Space by
the Rotation Group

IN
accordance with III, 8, we can interpret the theory of

a single electron in a spherically symmetric electrostatic field,

as developed in II, 5, in the following manner. A rotation

of physical space, i.e. an orthogonal transformation from the

Cartesian co-ordinates xyz into xy'z\ induces a unitary trans-

formation U(s) : ^ ~>
if/'

defined by

t'(X'y'z')
=

t(xyz) (1.1)

in the system-space 9ft of the electron, the vectors of which are

the wave functions ifj(xyz) describing the state of the electron.

The correspondence s -> U(s] is a definite representation S, of

infinitely many dimensions, of the rotation group b 3 . This

representation ( can be reduced into its irreducible constituents

2)j, and it is found that each (

S) l
with integral / occurs an infinite

number of times. The total system-space 9ft is correspondingly

decomposed into mutually orthogonal sub-spaces 9t(n/) ; 9ft(n/)

has 21 -|~ 1 dimensions and the rotation group induces the

representation 3) t
in it. If we introduce in addition the im-

proper rotations (bg) 2) e always appears in 6 with the signature

( l)
f

. The oo-dimensional sub-spaces ${(nl) associated with
n

the various values of / are uniquely determined, but their further

decomposition into the summands 9ft(n/) is quite arbitrary. In

particular, this can be done in such a way that the energy of

the states composing 9ft(n/) has a definite value E(nl).

We now calculate the operators induced in system-space

by the infinitesimal rotations of physical space. Denoting the

increase
if*' (xyz) ^(xyz) by d<//, equation (l.l) becomes

185
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/or the infinitesimal rotation 5 which sends

Xj y, z into x
f = x + dx, y'

= y + dy, z' z + dz.

Taking as s the three infinitesimal rotations Dx ,
Dy ,

D 2 in turn

[III, (15.4)] and writing the corresponding infinitesimal unitary

operators in the form

<ty
=

\(L
X ,
Ly , LM,

we find

AS is accordingly the moment of momentum [cf. II, (4.9)].

On going over from one electron to two, the vectors of system

space are the functions ^(x^y^ ; xjy 2z2)
of the Cartesian co-

ordinates of both electrons. The unitary transformation

U :
if/
-> 0' induced in system-space by the rotation s is now

defined by the equation

where x'$\z\ and x'^y'^ are obtained from x
1y lz l and

by the same orthogonal transformation s. This situation can

be described as follows : The state space 9t
2 of the system con-

sisting of two electrons is 9R X 9t and the representation G2

induced in it is @ X (.

This representation is, as we see, determined by the kine-

matical constitution of the system alone, and is in no way
influenced by the dynamical relationships ;

the rule for X -

multiplication for the induced representation on composition
of partial systems presupposes only kinematical, not dynamical,

independence of the partial systems.
We can, without further trouble, formulate the situation

discussed above in terms of the general scheme of quantum
mechanics in a manner which is independent of the particular

assumptions of Schrcdinger*s scalar wave theory. This is all

the more important since it has all along seemed doubtful

whether the matter waves could be described in terms of a

single state function
/r.

We set up an analogy between the actual

displacement of the state of the system in time and the virtual

change produced by an arbitrary rotation of space. The
transition from time / to time /' changes the (arbitrary) state

J at time / into a state j' at time /', obtained from J by a unitary
transformation U corresponding to a displacement of the time

axis which sends t over into /'. The displacements along the

time axis constitute a one-parameter continuous group which is
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isomorphic with the group of transformations U associated
with them in system-space. The former group is generated
from the infinitesimal displacement t -> t + dt, and it therefore

suffices to give the infinitesimal unitary operator

. dt

associated with it in system-space. We called the Hermitian

operator H the energy.
On subjecting the physical system (or the spatial co-ordinate

system in terms of which it is described) to a virtual rotation s,

the state J goes over into another state '. Since nothing
intrinsic to the system is changed thereby and since the state

space 5R is linear and unitary, the transition U(s) : J -> j'

associated with s must also be linear and unitary. As in the

case of the group of actual displacements in time, this group
of virtual rotations in space must induce a certain representation
31 in the system space 3t

;
this latter is more properly to be

considered as a ray, rather than a vector, space. But if we go
over from tne rotation group to the unimodular unitary group
U 2 (or U2 ) by stereographic projection (III, 8) and take this

latter as fundamental, it is, in accordance with III, 16, not

necessary to distinguish between ray and vector representations.
The group of proper rotations can be generated from its infini-

tesimal operations, and we may take as a basis for these the

infinitesimal rotations L) x ,
D

y ,
D z about the A'-, y-, and s-axis.

It then suffices to know the infinitesimal unitary transformations

which they induce in system space. We call the real physical

quantities of the system which are represented by the Hermitian

operators M xt My ,
M z the x-

9 y- f ^-components of the moment
of momentum 9)f. In order to express them in terms of the

usual units they must, as was also the case with the energy,

be multiplied by the quantum of action h. The moment of

momentum plays the same role with respect to the virtual rotations

of space as the energy with respect to the actual displacements in

time.

One argument for the appropriateness of our definition of mo-

ment of momentum is that in the case of the Schrodinger theory

it leads to the usual formulae of classical mechanics. As a further

justification we prove the general theorem that the moment of

momentum so defined is constant in time. We saw in II, 8,

that the necessary and sufficient condition that the physical
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quantity represented by the Hermitian operator A be constant

in time was that A commute with the Hermitian operator H
induced by the infinitesimal displacement of time. In exactly
the same way we can show that the commutativity of A with

Mx , My, M z constitutes the necessary and sufficient condition

that the quantity represented by A remains unaltered under the

virtual proper rotations of space, i.e. that A is a scalar with

respect to these rotations. Now the energy is a scalar, hence

HMX
- MX H =

0, -.

But, on the other hand, these equations assert that M^ My ,
M z

are constant in time.

The infinitesimal rotations generate only the group of proper
rotations

;
in order to obtain the complete orthogonal group we

must supplement them with the reflection i in the origin, or

extend the group 112 to the group u^ by the addition of the ele-

ment i (III, 8). L will induce a unitary operator / in system
space which commutes with all U(s} }

in particular with the

moment of momentum 2Ji = (Mx ,
My ,

M z), and which satisfies

the equation // = 1
;

this shows that / is Hermitian, as well

as unitary. A quantity A which is unchanged by reflection

must commute with /
; hence, in particular, the energy H

must commute with /. The physical quantity represented by /,

which we call the signature, is constant in time, as it commutes
with H. It has, in common with all quantities arising in group
theory which are not associated with infinitesimal operators,
no analogue in classical mechanics.

We reduce the total system-space into invariant sub-spaces
with respect to the group of displacements in time

;
such an

invariant sub-space is carried over into itself by the generating

infinitesimal operation d% ~H%. Since we are here dealing

with a one-parameter Abelian group, or with a single operator //,

this reduction can be carried to the point in which all the con-

stituent sub-spaces are 1-dimensional. The states contained in

one of these invariant sub-spaces we call quantum states.

We now proceed in exactly the same manner to reduce the

representation 31 induced in system space by the group of rota-

tions into its irreducible constituents 2) 7
. We make use of the

fact that these are known to us a priori ; only the number of

times they appear in W depends on the particular representation
9i. (Of course, we have not as yet shown that the

<

3); really
constitute a complete system of irreducible representations of

b3 ,
and it may seem risky to apply the process of reduction to

the oo-dimensional representation 9?. This procedure can,
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however, be justified on the basis of the fact that b 3 is a closed

group. But in the final formulation of quantum mechanics it

will not be necessary to base our conclusions on such general
considerations, as the reduction into 3), will be obtained by
elementary means.) The entire system-space 3} is thus decom-

posed into sub-spaces %, 9?
;
',, such that 3} ;

is of dimension-

ality 2j + 1 and the representation induced in it by the group
U 2 is $/. On adapting the co-ordinate system in system-space
to this decomposition the variables fall into classes

x(m) (w = y, ;'- 1, , -;') ;

X'(m') (w'-y, /-I, ,-;');;
under the influence of an arbitrary transformation a of U 2 ,

applied to the variables
, rj

the co-ordinates of system-space
transform in accordance with the law

x(m) ~ --= (i + k = 2j, i-k = 2m).V i ! k \

With the reduction of JK or 9i is associated the reduction of the

angular momentum 9)i
;

in the sub-space SK, the components
of 9Ji are given by III, (15.9), from which it follows that the

square M 2 of the moment of momentum has there the fixed

value j(j + 1). (It is evident from general considerations

that M 2 must be a multiple of the unit matrix in 5R ; ,

for it is

a scalar and must therefore commute with all the operators of

the irreducible representation 2),-.)
If the state of the system is

represented by a vector lying in 9R>, the s-component of its

moment of momentum is capable of assuming the values m = j,

j 1, , j\ the 2-component naturally only apparently

occupies a preferred status, due to the fact that the co-ordinates

in 5i, were chosen in a manner which differentiated the s-axes

from the others. That M 2 ,
A/ 2 can a priori assume only discrete

values m, j(j + 1) is essentially due to the fact that the rotation

group is closed
;
since the group of displacements in time is open,

the analogous result for the energy need not in general hold.

In this connection we wish to emphasize again that the operator
H depends on the dynamical relationships existing in the system,

whereas the representation 91 induced by the group of rotations

is determined only by the kinematical situation (number of

elementary particles, etc.). The signature / also assumes a

definite one of its values 1 in each sub-space $R;
. For lack

of a better name we call the states which lie in the sub-

space 9ft,,
which is invariant under the group of rotations,

"simple" states of inner quantum number j. We must
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be prepared to find that j may here assume half-integral as well

as integral values, in contrast with the Schrodinger theory.
On uniting two kinematically independent systems, with

system-spaces 9ft, 9ft' in which the rotation group induces the

representations 9i, 9i', the total system has as system-space
9ft X 9ft',

in which the representation 31 X W is induced. In

particular, the moment of momentum of the total system is

(2R x 1) + (1 x 2R')

where 9Ji and 9JT are the angular momenta of the two partial

systems. The theorem that the moment of momentum behaves

additively with respect to composition is contingent only on the

assumption that the parts are kinematically independent,
whereas the corresponding theorem for energy applies only if

they are dynamically independent, i.e. in the absence of inter-

action between the parts. This difference is based on the fact

that whereas the energy represents that actual change of state

in the course of time, the moment of momentum represents
the virtual change associated with a fictitious rotation. We
reduce 9ft, 9ft' into the invariant irreducible sub-spaces 9ft/, 9ft}'

respectively, i.e into the simple states of the two partial systems

having inner quantum numbers, ;, /. The Clebsch-Gordan

equation (III, 5)

, X 3V = SW + i n'-i + + 3Wi (1-3)

then tells us : // the two parts are in the simple states with inner

quantum numbers j, j' then the whole has each of the simple states

with inner quantum number

j = j + j', y + y-i, , |y-y| (I-*)

associated with it
}
each exactly once. To include the signature

we must add : // the parts have as signatures the values 8, 8'

(8
=

1), the signature of the whole has the value 8 8'.

Compare the results which we have obtained with the

corresponding results in classical mechanics. In both the moment
of momentum is constant in time and the moment of momentum
of the whole is equal to the sum of the moments of momentum
of the two parts. Denoting the magnitude of the moment of

momentum in classical theory by j, we have, in agreement with

a-*),

for the resultant of two vectors of magnitudes j 9 j' is a vector

whose magnitude / lies within these limits. Quantum mechanics

deviates from classical mechanics in the following three respects :
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1 . In quantum mechanics the square of the moment of momentum
is j(j + 1), in classical mechanics it is j

2
;

2. Here j can assume only the discrete values 0, J, 1, ;J, -,

there it may have any non-negative value ;

3. Here the J obtained on compounding two partial systems
can assume only those values between j

-

j'
j

, j -j- j' which differ

from them by an integer, there it can assume any value between these

limits.

Already before the rise of the new quantum mechanics a

semi-empirical description of the regularities observed in spectra
had been given with the aid of a vector model consisting of the

vectorial moments of momentum of the individual electrons

and (Tf the atom as a whole
;

the observations, assisted by the

older quantum mechanics, had already led to these three modi-

fications of classical theory.
1

The reader will perhaps have wondered why we consider

only the virtual rotations of space and not the translations,

which must also be taken into account in order to arrive at a

complete description of the homogeneity of space. The reason

for this is that in studying atoms or ions we treat only the

electrons as particles, taking the nucleus as a fixed centre of

force situated in the origin. That this is at least approximately
correct is due to the fact that the mass of the nucleus is many
times the mass of the electrons. Space is thereby transformed

from a homogeneous into a centred space ;
such a procedure

naturally allows us to consider only atoms or ions, which have

a single nucleus. Diatomic molecules are accordingly described

with the aid of the 1-parametcr group of rotations about the

axis joining the two nuclei, and not by the full 3-parameter

group of rotations of space to this we must add reflection in

the plane which bisects the axis perpendicularly in case the two

nuclei are physically equivalent.
2

If we are dealing with three

or more fixed nuclei the symmetry either disappears entirely or

is reduced to at most a finite group of rotations. 3

2. Simple States and Term Analysis. Examples

To each characteristic value E' of the energy H there belongs

a definite sub-space 9T of 91, the sub-space of quantum states

with energy level E'
;

it consists of all states j which are trans-

formed into E'*l by the operator H and is accordingly the

characteristic space 9t(') associated with the characteristic

value E' of PL Since the energy is a scalar, the considerations

applied in the preceding paragraph to the total space 9i can also
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be applied to 9ft' : 9ft' is invariant under the operators induced

in system-space by the rotation group and is consequently the

carrier of a certain representation of this group, which can be
reduced into its irreducible constituents. If the energy levels

are of at most finite multiplicity we are faced with the problem
of reducing only representations of finite degree. Accordingly
9ft is decomposed into the

4I

simple spaces
"

9ft, associated with

the rotation group in such a way that not only the square of

the angular momentum and the signature have definite values

in
9ftj, but also the energy has a sharply defined value

",.
This

energy level Et is necessarily (2; + l)-fold degenerate ;
we

speak of an accidental degeneracy when the energy levels of

different simple sub-spaces 9ft^ are equal. /, M z ,
M 2 and H

are all simultaneously in diagonal form
;

that this is possible
is due to the fact that these four operators all commute among
themselves. In this way the reduction into simple states can be

employed in term analysis : each energy level Ej possesses an
inner quantum number ; which gives the term the natural

multiplicity 2; + 1.

On subjecting the atom to a perturbing field which destroys
its natural spherical symmetry this (2; + l)-fold term is broken

up into 2j + 1 terms. Let the perturbation, i.e. its Hamiltonian
function W, possess axial symmetry about the 2-axis

;
if Ej

possesses no accidental degeneracy, then in accordance with the

theory of perturbations the perturbed energy levels are given to

a first approximation by the portion of the Hermitian operator
W in which 9ftj intersects itself :

x(m) -> W(m, m'} x(m'} (m'
-

;, ;
-

1,
-

,

-
;).

The rotation about the 0-axis with meridian angle <f>
transforms

x(m] into e( mfy x(m], and in virtue of the symmetry assumed
for W this correspondence of

9ft,-
on itself must also be represented

by

e(- m<f>) x(m) - ZW(m, m'} e(~ m'<f>) x(m'),

or

W(m, m'} e[(m
-

m')</>]
- W(m, m}.

But this means that all elements W(m, m') except those in the

main diagonal vanish, whence

Ej + W(m, m) (2.1)

are the 2; + 1 perturbed terms. The quantum number m,
which is capable of assuming the values j, j 1, , j,

thus serves to label these components. Perhaps the most
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important axially symmetric perturbation is that due to a

homogeneous magnetic field in the direction of the s-axis

(Zeeman effect] ;
because of this m is called the magnetic

quantum number. The inner quantum number j of a term
can be determined spectroscopically by counting the number of

terms appearing in the Zeeman effect. Sommerjeld first con-

cluded, from the spectroscopic data, that j as well as m must be
allowed to assume half-integral values. If we consider the

Zeeman effect to be described by the analogue of the classical

formula II, (12.5) then

(2.2)

and W is rigorously in diagonal form :

W(m, m) = horn. (2.3)

Our analysis shows that the breaking up of energy levels due
to an axially symmetric perturbation parallels the reduction of

an irreducible representation of the rotation group b 3 when this

is restricted to the group b 2 of rotations about the s-axis : by
this Xy is reduced into the 2/ ~f 1 one-dimensional representations
which we have previously denoted by 2)(m) :

x(m) ->
e( m<f>)

-

x(m).

If two kinematically independent parts, which are in the

simple states 9t y , 91^,
are compounded together, the state of

the composite system is in the (2j + l)(2j' + l)-dimensional

product space 3tjT
==

gfy x
9RJ,.

If the parts have the energies

Ej, E'., then the whole has the energy E
f + E',., assuming no

interaction between the parts. Introducing a weak interaction

between the two partial systems and assuming that there is no

accidental degeneracy, i.e. assuming that all the remaining

energy levels of the unperturbed system are different from /},,/,

it suffices, to a first approximation, to consider the section

<//> of the energy operator H in which 9fy,/ intersects itself;

it is an Hermitian correspondence of 9?,r on itself. We can

apply the considerations, which were applied above to the total

system-space 91 X $', to each of these $> : ${> is to be de-

composed into sub-spaces belonging to numerically distinct

characteristic values of <//>. The rotation group induces a

certain representation in each of these sub-spaces, and this

can be further decomposed into its irreducible constituents.

The result is that 91, X 9^< is, in accordance with the Clebsch-

Gordan series, reduced into the simple spaces 3l/, / = j + j',

j -fy i
f -, |; j'|, in such a way that in each of them
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the energy <H> has a definite value Ej. Different Ej can only
"
accidentally

" have the same numerical value. Consequently
the term E}j

> is broken up by the perturbation into terms Ej
in exactly the same way as the representation X> X X^ is

reduced into the irreducible representations Xj. But this is

only correct to the approximation characteristic of perturbation

theory. As we have seen above, an inner quantum number

/ can be rigorously ascribed to a term E
;

in the approximation
with which we have been dealing here there is associated with

it in addition the inner quantum numbers ;, ;' of the parts, in

the last analysis of the electrons themselves : the energy level

E arises from a definite term Ej }
> of the unperturbed system by

interaction of the two parts. Such an association is rigorously

possible for
"
simple states," but the rules based on it lead only

indirectly and approximately to an analysis of the terms. 4

Examples

If we take the Schrodinger scalar wave theory to be valid

for a single electron, then a simple quantum state of the electron

in the field of the nucleus is characterized by the principal

quantum number n and the azimuthal quantum number / (we
here use the word "

azimuthal
"

instead of
"
inner "). Such

a term is (27 + l)-fold degenerate, and we assume there is no

further accidental degeneration. The moment of momentum
is represented by the operator taken over from classical

theory ;
the square of its absolute magnitude is /(/ + 1) and

the signature has the value
( 1)

/

. If /electrons come together
to form an atom we obtain a term, neglecting interaction between
the electrons,

(!/,) + (n 2/2) + + (,/,) (2.4)

of multiplicity (2/ x +!) (21f + 1). The quantum numbers
n and / refer to the individual electrons. The interaction causes

a separation which parallels the complete reduction, obtained
with the aid of the Clebsch-Gordan series, of

X, t
X X,2

X X X,, (2.5)

into its irreducible constituents XL with total azimuthal quantum
number L Each such term is associated with the quantum
numbers

(tti'i, n*l*>
'

',
nf ls \ L). (2.6)

If / *> 3 certain XL appear more than once in (2.5), and we may
therefore have several (2L -f l)-fold terms associated with the
same set (2i6) ;

these must then be distinguished from each
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other by some further index. The square of the total moment
of momentum is L(L + 1) and the signature ( l)

l
i
+ '+

+*/.

In spectroscopy it is usual to characterize the values / = 0, 1, 2, 3,

4, by the small Latin letters s, p, d, /, and the values

L --
0, 1, 2, 3, by the corresponding capitals S, P t D, F, .

We cannot expect the scalar wave theory to be correct,
but must be prepared to describe the state of the wave field

in terms of a quantity //
with several, say a, components

W'l* ^2,
* '

', ^a), i.e. by a covariant quantity of a definite kind

% Each component is a function of the spatial co-ordinates

xyz ;
the components will depend on the choice of the Cartesian

co-ordinate system in such a way that on going over to a new
co-ordinate system by the rotation s the components will undergo
among themselves that transformation A(s) which corresponds
to s in the representation 9(. Again, consider b 3 replaced by U 2

as the fundamental group. The general component *l*a (xyz) of

the
4t
vector

"
i/r

has two indices, the index a running from 1 to a

and the index (xyz) running through all the points of space.
Let $l t

be the vector space of functions *l*(xyz) and 9Ja the

a-dimensional vector space ;
the state space of a single electron

is then 9Rrt X 5R/. Under the influence of the rotation s which

sends xyz into x'y'z' the state
<// goes over into the state

i/f'

defined by the equation

ti(x'y'*')
- Za, ft h(xyz}, \\

a
aft \\

- A(s] ;

ft

the representation induced in system-space is accordingly
$1 r-rr ${ x . The moment of momentum 3ft of the electron

consists of two parts :

an- (<g x i) + (i x s), (2.7)

the first of which refers to the a-dimensional
tl

spin space
"

9Ra ,

the second to the
"
translation space

"
9t r

. (1 X Lx),
or simply

L,, is the operator ~(y- z} which acts on each of the
*' v i\ ^z iy/

a components in the same way ;
it affects only the index (xyz},

leaving the index a unaltered. vS, is the unitarv transformation
8

i

corresponding to the infinitesimal rotation about the .r-axis in

the representation 91; (5, X 1), or simply Sx , consequently

affects only the index a and leaves (xyz) unchanged. Only
the part appears in classical mechanics

;
we call it the orbital

moment of momentum, and the remaining part @ the spin
moment of momentum, or simply the spin. Its appearance
is unavoidable so long as the wave quantity is not simply a

Pure Mathematical Physics



196 APPLICATIONS OF GROUP THEORY

scalar or a set of scalars. Each of the two parts satisfies separ-

ately the commutation rules III, (15.7), but in general only the

total angular momentum satisfies the law of conservation. If

the quantity if/
is of a simple kind, i.e. if 91 is an irreducible

representation ,,
then a = 2s + 1 and the spin @ is equal to

the moment of momentum 9JI, associated with the representation

$..
Since the Schrodinger theory has proved itself at least

approximately correct, one should assume that to a first ap-

proximation each of the components {fja satisfies the Schrodinger
scalar wave equation. So long as we consider this approxima-
tion, the a components have only the effect of multiplying the

multiplicity of each energy level by a. But in reality the correct

differential equations must contain a term, the
"
spin per-

turbation" which introduces a coupling between the various

components t/r,.
The electron can thus be considered in

abstracto as a composite system, consisting of the electron

translation with system-space 3t, and the electron spin
with system-space 9ta ;

the spin perturbation is the weak inter-

action between these two. Because of this the method of

composition can here be applied. Let 3{ $,. Decompose the

translation space 3^ into the (2/ + l)-dimensional sub-spaces

9ft(n/) ;
the corresponding energy term E(nl) with azimuthal

quantum number I has, on neglecting the spin perturbation, the

multiplicity a(2l + 1) and its characteristic space is the space
3ta X $i(nl) of the same dimensionality. On taking the first

order spin perturbation into account this term is separated
into the terms E

}
with inner quantum number; and 'multiplicity

(2j -f- 1) in a manner paralleling the decomposition of the repre-
sentation , X 5) i

into its irreducible constituents :

3). X $, = $,, j
- s + /,

5 + / - 1, , \l

- s
, (2.8)

with the aid of the Clebsch-Gordan series. Care must be taken

to differentiate sharply between the azimuthal and inner quantum
numbers / and j. The latter is capable of assuming the values

given in (2.8) ;
whenever / ^ s the number of different terms in

such a
"
multiplet

"
is 2s + 1. L2

is approximately equal to

the constant /(/ + 1), S2
is approximately equal to the constant

s(s -f 1), and M2
is rigorously constant and exactly equal to

j(j + 1). We can thus speak of the azimuthal quantum number
of an actual energy term only to within the approximation
characteristic of perturbation theory. It is well to set forth

these considerations beforehand and to approach the spectro-

scopic data, as we shall in 4, with them well in mind.
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3. Selection and Intensity Rules

We return to the consideration of our system as a whole,
without resolving it into its individual electrons, and again
denote the total inner quantum number by j. Let A be any
physical quantity of the system, and let it be represented by
the Hermitian form A

;
we write that portion of this form in

which 9ft, intersects
9ftJ,

in the form

where the indices w, m run through the values

m -
;, j

-
1, -,

-
j ;

m' - ;', j'
-

1,
- -

,

- f . (3.2)

// the quantity A is a scalar, the operator A commutes with the

operators U(s) induced in system-space by the rotations s.

On decomposition into these irreducible sub-spaces 3^, 3^v it

follows from the fundamental theorem III, (10.5), of the theory
of representations that the section (3.1) of A corresponding to

the transition W
}
->

3^, 25 zero if j' -%= j and a multiple of the

(2j -f- \}-dimensional unit form

iff = j.

An analogous situation exists for the group b 2 of rotations

about the -axis. With respect to it the total system space

decomposes into 1-dimensional invariant sub-spaces 9^m) in

which the rotation with angle <f>
induces the representations

<j)<fn)
.

#(m )
.> (__ m<

) x(m}. If we only assume that the physical

quantity A possesses axial symmetry about the s-axis it follows

that the coefficient a(mm] is necessarily zero when the magnetic

quantum numbers m and m' of the initial and final states are

different.

We now consider a vectorial quantity q with the three

components qxi qy , q z instead of the scalar quantity A. This

is of particular importance because such a quantity, i.e. the

electric dipole moment q of the atom, determines the interaction

between the atom and radiation to that approximation in

which the linear dimensions of the atom may be neglected in

comparison with the wave-length of the emitted light. If the

degeneracy of the energy level E} is destroyed by an external

axially symmetric perturbation, e.g. a homogeneous magnetic
field in the direction of the s-axis, then the spectral line caused

by the transition 91, -> 9^/ from the term Ef
to E], is broken

up into the lines associated with all possible transitions
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($,, m) ->
(91}', w')- On calculating the part of the Hermitian

form representing the electric dipole moment in which the sub-

space SR, intersects 9fty/ :

Z<\(mm')x(m)x'(m'), (3.3)

the ratios of the squares |q(ww')|
2 of the absolute values of its

coefficients determine the relative intensities of these (2j + 1)(2;'+ 1)

lines. Since q z is axially symmetric about the s-axis q z(mm') =
unless m 1 = m

;
we thus have the selection rule

q z : m -> m (3.4)

for the s-component of the electric moment. On performing
the rotation with angle <b about the -axis x(m), qx -\~ iqy , qx iqy

are multiplied by e(m<f>), e(<f>}, e(~(f>) respectively. Since

x(m)x'(m') is therefore multiplied by e[(m m')(f>] we obtain

the selection rules

qx + iqy : m -> m 1, qx iqy : m -> m + 1 (3. 4')

for the x- and y-components of q. Only the transitions

m -> w 1, m, m+1 (3.5)

0/ //* magnetic quantum number are allowed ; the first and the

last generate two waves which are circularly polarized in the ocy-

plane in opposite directions, and the remaining transition m -> m
generates a wave which is linearly polarized in the z-direction.

If the equation (2.3) holds for Zeeman effect, the wave number
of the component m -> m' is displaced by an amount o(m m')
from its unperturbed value. Thus in

tl
normal Zeeman effect

"

we obtain instead of (2; + 1)(2/' + 1) components only three,

whose polarization is as described above and whose wave numbers
are displaced by the amounts 0, i o. That the resolution of

the two terms E^ E'j>, is almost entirely hidden is due to the

fact that the factor of proportionality ho in (2.3) has the same
value for both terms. Fortunately most of the cases actually
observed show "

anomalous Zeeman effect" in which the resolu-

tion of the terms can be seen clearly ;
in order to explain it

we must change the expression (2.2) for the perturbation due
to the magnetic field. But the above selection rule for the

magnetic quantum number, which has been obtained from
fundamental principles of group theory, is valid in all cases.

The selection rule for the inner quantum number j is obtained
in an analogous manner. The three components qxi qy , q z of q
suffer the transformation s among themselves when the x(m),

x'(m') are subjected to the transformations corresponding to

s in the representations $),, 3),/ respectively. Or, if we wish to
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express it in terms of U 2 instead of b3 ,
s is that transformation

which is associated with the element a of U 2 in the representation
$!. This is, of course, merely an expression of the fact that q
is a vector. Now, in accordance with the terminology intro-

duced in III, 14, (3.3) is a vectorial quantity in the representa-

tion space of 35 y X $V, and we are interested in determining
how many linearly independent quantities of this kind there

are. Their number is given by the number of times 2) 1
is

contained in $), X 5V or 3), X 5V as an irreducible constituent.

But in accordance with (1.3) Xi occurs in X, x $V exactly
once if

;'
=

j 1 or j or j + 1

and otherwise not at all, and we must further exclude the case

j
-^ G\ j'

r. 0. We thus obtain the selection rule

;->;-!, ;, j + \ (3.6)

with the proviso that -> does not occur. Since there exists

but one linearly independent vectorial quantity in the repre-

sentation space of 2); X 5V in the cases in which the selection

rule is satisfied, the components of q(m, m'} are determined by

purely group-theoretic considerations to within a constant factor

of proportionality.
In order to calculate the vectorial quantity (3.3) for/ = / 1

we proceed as follows. Let f , 77 ; ', 77'
be two arbitrary points

on the unit sphere which transform cogrediently under u.

l' + 7~7/ is then the fundamental invariant, and the three

forms which are obtained from

^ (&' + fnV (3.7)

by multiplication with

transform in the same way as the (x + iy}-, (x f'y)-, ^-com-

ponents of a vector, respectively. They are linear in the

monomials %
r

ij*
of degree fe + 2 = 2; and in the monomials

' r

Y*' of degree k = 2;'. Introducing

-

(2;
= r + 5 = A + 2, 2m = r - 5

; 2;'
= r' + ?' = *.

2i' r
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as co-ordinates in the representation spaces of 5)/, 2)j/ we find

that the three forms above are of the type (3.3) with/ = j 1.

For example, we obtain for the (x + iy)-component

'r ! si V(r S3)
! si

= - Z V(j + m)(j + m - l}x(m)x'(m
-

1).
m

In agreement with the selection rule m -> m 1 there occur here

only those terms for which m ~ m 1. Calculating the

(x iy)- and ^-components in the same wr

ay, we find for the

transition

m)(j + m - 1),

(q,
-

iqy)(m, m + 1)
= V(j - m)(j

- m -
I), (3.9)

qt(m, m) =

In order to calculate the components for the transition j
=

j'

we must replace the factors (3.8) by

which also transform like the (x + iy)-, (x iy)- and 0-com-

ponents of a vector. Finally, for the transition j
1 ==

; + I we
must replace (3.8) by 7/

2
,

-- /2
, f 'ij'.

Since the angular mo-

mentum 9K is a vector, the formulae for the transition j -> j

must naturally agree with those already obtained for 9JI [III

(15.9)], and since q is Hcrmitian the formulae for the transition

j _^ j -|_ 1 must agree with those obtained by taking the

Hermitian conjugate of the components for the transition

(q* + i<lv}(m >
m 1}

= V(j + m)(j m + 1),

(q,
-

iq,)(, m + 1)
= V(j - m)(j + m +1), (3.9)

q z (in, m} = m.

-> = + i.

, m})= V(j - m + 1)Q' m + 2),

--
iqy}(m, m + 1)

- - V(j + m + 1)(; + m + 2), (3.9)

? 2(m, m) = V(; + m + 1)0' w + 1).
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In each of these three sets of formulae the right-hand sides are

determinate only to within a common factor of proportionality
which is independent of w, but which can be completely deter-

mined only by integrating the wave equation of the dynamic
model of the atom, and not by the theory of groups alone.

The coefficients which do not occur explicitly in the above
formulae are all null. The squares of the absolute values of these

coefficients yield the (rational !) intensity ratios of the components
into which a line is split by the perturbation.

Already before the rise of the new quantum mechanics the

intensity formulae (3.9) for the components of a line emitted
under the influence of a magnetic field were obtained from the

observational data under the guidance of the correspondence

principle.
5 In the new quantum mechanics they are, as we

have seen, a consequence of the most general principles, and we
would find ourselves in serious difficulties if they were incorrect.

Nevertheless it is to be remembered that they can be invalid

(1) if the spherical symmetry of the system is destroyed by
external perturbing fields, or (2) if for short wave-lengths the

interaction between matter and radiation is no longer determined

primarily by the electric dipole moment.
Since the dipole moment is a proper vector, as the components

<7-n <7y, Qz g<> over into q ri qy , q z on reflection i in the

origin, the representation 1& l
induced on them by u.j has as

signature 1. If the signatures of JR
3 , ${]> arc 8, 8', then under

the influence of the reflection i (3.3) is multiplied by the factor

88'. The coefficients q(ww') must accordingly all vanish unless

88' 1
; the selectio)i rule for the signature is

8 - - 8.

If the individual electrons are governed by the scalar wave

theory the total azimuthal quantum number L of the atom

can jump only to L 1, L or L -f
-

1, while the sum of the azi-

muthal quantum numbers of the individual electrons l \- / 2 -f + //

can change only by an odd integer (Laporte's rule}. In the case

of a single electron, /= 1, only the transitions / > / 1 are

consistent with these rules
;

this result has already been obtained

in II, 5. from the theory of spherical harmonics.

The formulae (3.9) allow us to solve a problem which we shall

here, for the sake of future application, introduce from the

physical standpoint. A partial system in the simple state 9ft,

is compounded with a second in the simple state 5^- to form

a single system. In 9ft,r = 9t, X 5Rj,,,
U 2 induces the representa-

tion 3) ~ X; x $V ;
let the corresponding moment of mo-

mentum be 9JJ. On adapting the normal co-ordinate system
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in JR^/ to the complete reduction of 5) into its irreducible con-

stituents 5)j, 9K is broken up into square sub-matrices 30ft/ of

length 2J -f- 1, arranged along the principal diagonal, corre-

sponding to the decomposition of 9^ ;
< into sub-spaces 9ft/. But

the same is not true of the moment of momentum 9)J; X 1 of

the first partial system, and we wish to determine the portion
of this matrix in which 9ft/ intersects itself. That is, in physical

language, we wish to determine the temporal mean value \9JJ,

of the moment of momentum of the first system in the state

defined by the quantum numbers /, j' ; / of the two parts and
the whole. We assume that the interaction between the two

parts resolves the energy level E)}
< into distinct levels Ej on

applying the theory of perturbations. Since SD} ;
is a vector we

know, from the same considerations as we applied to the electric

dipole moment above, that the portion of it corresponding to

the transition / -> / must be a multiple of 9J}j :

<3R, x 1\, = K,-2R,. (3.10)

In order to evaluate the proportionality factor K we construct

the scalar product of the matrices
(
Slft3 X 1) and SIR

;
since

m ==
(2R, x 1) + (1 x 2R,,)

these two matrices commute and we have

(1 x 9K,<)
2 - 9tt

2 + (2R; x I)
2 - 22H(g, x 1)

or

23R(3R, X 1)
=

j(j + 1)
-

]'(]' + \) + 3R a
, (3.11)

for since in the original co-ordinate system (9)i; X I)
2 was

j(j + 1) times the unit matrix, it remains the same in the new
co-ordinates. And, on the other hand, 9Jt(9J?y X 1) is equal
to *,//(/ + 1) times the unit matrix in the sub-space 9ft/, as

follows from (3.10). Hence from (3.11)

i)
-

j(j + i)
-

;"0" + i) + J(J + ]
),

4. The Spinning Electron, Multiplet Structure and
Anomalous Zeeman Effect

We have hitherto ignored the fact that the terms of the

alkali spectra, characterized by the two quantum numbers n, /,

are in reality not simple. Each of these terms with the ex*

ception of the s terms / = actually consists of a fine doublet.

By 2 the (n, I) term should be resolved into 21 + 1 components
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in a magnetic field
;

instead we find that one of the doublet
terms breaks up into 21 components and the other into 2/-+ 2.

We should accordingly ascribe to them the inner quantum

numbers y
= / -

j = / -f
-

respectively.L

Our general considerations immediately give us a hint as

to how this discrepancy is to be explained. The quantity /r

describing the wave field is not a scalar, but is instead a tovariant

quantity of the kind <

3)
i , having two components (0,, i// 2). This

is the theory of doublet phenomena as developed by W. Pauli.*

It seems indeed easy to arrive at this conclusion after the

preparation of the preceding paragraphs, but historically this

systematic foundation was developed only after PaulVs dis-

covery. It is quite immaterial whether we associate the matrix

-f 1 or the matrix 1 with the element i in the representation

S)| of u.>. Taking the first of these alternatives, the signature
has the value

(- 1)' in the quantum state (nlj) ;
hence Laporte's

rule remains rigorously correct on taking the spin into account.

We have as further rigorous selection rules those concerning
the total inner and the total magnetic quantum numbers. In

the representation 3)^ the transformation a itself corresponds
to the element a of U 2 ,

and by III, (15.6), the spin moment of

momentum is -@, where <5 is the vector already defined with

components

1

1

-i

1

We shall not as yet attempt to find the specific effect of the

spin perturbation on the wave equation. This was done origin-

ally by picturing the electron as a small material sphere, the

rotation of which gave rise to the spin ;
the additional moment

of momentum required by spectroscopic observations was first

introduced in this way by Goudsmit and Uhlenbeck. 1 Since

S z is capable of assuming only the values 1 it appears as if

the spin axis can only be quantized along the positive or negative
s-axis

;
we need not go into the false conclusions this assertion

can lead to on interpreting it literally. The spin perturbation
must appear in going over from classical to relativistic mechanics.

The terms of the hydrogen atom, calculated in accordance with

the scalar non-relativistic wave mechanics, depend only on the

principal quantum number n, but the theory of relativity intro-

duces a correction which causes the terms corresponding to the

various values of / to split apart and form the so-called fine
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structure. We should therefore expect the same scheme of

terms in hydrogen as in the alkalies, but observation shows
that the doublet separation of an / term into two terms with

j
= I

g
is

J
ust such that tw terms with the same /, but with

different / = j
-

exactly coincide. Hence the spin per-

turbation in hydrogen agrees quantitatively with the separation
caused by the relativity correction.

The alkali doublets show anomalous Zeeman effect. Other

elements, such as alkaline earth metals, have (in addition to

triplets) a system of singlet terms, and singlet terms always
show normal Zeeman effect in a magnetic field. It therefore
seems probable that the anomalies in Zeeman effect are closely
connected with the spin. The magnetic separation of an alkali

term is quite independent of the principal quantum number n
;

all the terms of a series behave in the same way. A term
(/, j)

splits up into 2; + 1 equi-distant components, characterized by
the magnetic quantum number m, but their separation is hog
instead of ho, where g is a rational function of / and j (the

t4 Lande
g-factor "). The energy value of the component m is therefore

displaced by an amount

hog -m (m = ;, j 1, -,
-

j) (4.1)

from its unperturbed value. The empirical formula for the factor

g, which is due to Lande, is

This formula holds for weak magnetic fields, in which the separa-
tion is of a smaller order of magnitude than the doublet separation.

If / = 0, j
- we have in particular g 2.

This latter fact gives a hint toward the solution of the puzzle :

If the total moment of momentum consisted only of the spin
(fi 0), its magnetic effect would be twice as great as if it con-
sisted of fi alone. We therefore assume that the magnetic effect

of the spin
- is twice as great as that of the orbital angular mo-

mentum fi
;

the perturbation due to an external magnetic field $
is therefore to be taken as
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The spin offers an explanation of why the beam in the Stern-

Gerlach experiment is separated into two parts. The valence
electron of the univalent silver atom is, in the normal state,

in an s-orbit (/
=

0) ;
hence j

= T and m can assume only the
1

J

values -. Although the component of the mechanical
Li

moment of momentum in the direction of the magnetic field

can have only the values -, the experiment shows that the
z

value of the magnetic moment of the atom is a whole Bohr

magneton, and not the half of one
;
but we now sec that since

the mechanical moment of momentum consists only of spin
it should give rise to twice the expected magnetic moment.
The connection between magnetic moment and mechanical

moment of momentum is even more apparent in the magneto-
mechanical effect : the demagnetization of a vertically suspended
bar of weak iron must result in giving to it an angular momentum.
The ratio between the change in the magnetic moment and the

^
moment of momentum was expected to be ^ , but the cxperi-

ment, which was performed only on fcrro-magnetic bodies,

yielded twice this value. The anomalous magnetic behaviour

of the spin also accounts for this result, if we assume that the

mechanical moment of momentum in ferro-magnetic substances

is due entirely to the electron spin.
8

Does this hypothesis also explain the general Lande formula

(4.2) ? This is answered by the formula (3.12) obtained toward

the end of 3, in which ;, j', / must be taken as -. /, ; in order

that it apply to the composition of electron spin and electron

translation. We find that in the state
(//')

the temporal mean

value of the spin
- @ is equal to 9Ji multiplied by the factor

or

1

2
'

2/(; -f- 1)

for j
= ll (4.4)

Hence by (4.3)
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So long as the magnetic separation is small compared with the

spin perturbation the Zeeman separation of the term (Ij) is

determined primarily by <W> ; (4.4) then leads, in fact, to

equation (4.2), in agreement with the empirical data.

If the atom consists of several, say /, electrons, the situation

then arising can be understood with the aid of the general rule

of composition. If the electrons are in quantum states with

inner quantum numbers j r and energy levels E(j r), (r
=

1,

2, ,/), then on neglecting the interaction between the electrons

the total system has a (2j 1 +!) (2jf -\- l)-fold energy level

(;\) + ' ' ' + E(jf). If this level coincides with none of the

other levels it is resolved by a small perturbation into terms

with total inner quantum numbers / in a manner corresponding
to that in which the product

' ' ' X ty=ZJ (4.5)

is reduced into its irreducible constituents ^j (Clebsch-Gordan

series). Obviously in order that this (jj) coupling lead to an

adequate description the mutual interactions between the

electrons must be small compared with the spin perturbation.
The situation usually met is, however, the opposite of that

contemplated above : the normal term order corresponds to

the Russell-Saunders or (si) coupling. Neglecting for the moment
the interaction between the electrons as well as the spin per-

turbation, we are led to a 2/(2/, + ]) (21f + l)-fold energy
level (2.4) in whose characteristic space the rotation group in-

duces the representation

{ X (S> fl
X $,, X X

$,,). (4.6)

Due to the interaction between the electron translations the

second factor is reduced in a manner analogous to (4.5) ;
a

single term with azimuthal quantum number L has now the

multiplicity 2^(2L + 1). We next reduce

i=27., (4.7)

and finally, as the last step, we carry out the reduction

a X <S)L =Zj, (J^L + s, L + s-l, -, \L-s\), (4.8)

associated with the coupling between the spin and the orbital

moment of momentum. The terms which result from this

last reduction form together a multiplet. Each multiplct is

therefore associated with a definite azimuthal quantum number
L and a spin quantum number s ; the individual members of

the multiplet are distinguished by the inner quantum number J.
We call 25+1 the multiplicity, although the number of terms
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in the multiplet is only actually equal to this when L ^ s, as

by (4.8) their number is less if L < s. The 2/-dimensional

representation ^ is even or odd according as / is even or odd.
The reduction (4.7) into irreducible constituents accordingly
yields only integral values for s when / is even and only half-

integral values when / is odd : The term multiplicities alternate

regularly between even and odd as we run through the atomic fable

in the order of increasing atomic number (H even, He odd, Li

even, Be odd, etc :

"
alternation law "). For/= 2 we have, for

example,

It is empirically found that the bivalent alkaline earth metals

have in fact a singlet and a triplet system of terms. But in the

triplet system the 5 terms, for which L 0, are simple ; only
the Pj D, ,

terms have the actual multiplicity 3.

Instead of considering all the electrons at once as in (4.6)

we can build up the atom by successively adding one electron

after another. On adding a next electron, say the /
th

,
to an

atom or an ion A*, a multiplet of A* characterized by azi-

rnuthal quantum number L and spin s breaks up into all those

multiplets contained in the representation (3)s X 2)
t )

X (2)L X S) z ),

where // / is the azimuthal quantum number of the electron

added. Since

2), X
j
- $, ti + X5 _i,

Xz, x 3>i
= $/-*, L* - L + /,

L + /
-

1, , \L
-

/|,

this results in multiplets (s* , L*), one for each of the pairs

s*-s.+ J,
/.*-/. + /, L + /--1, -, L -/| (4.9)

(

4I

branching rule "). The alternation law is again contained in

the first of the above equations. It is to be noted, however,
that the Pauli exclusion principle for equivalent orbits, which

will be discussed in part C of this chapter, materially restricts

the array of multiplets allowed by this rule. 9

Again applying (3.12) to the composition of spin and orbital

moment of momentum, we find that the 27 + 1 components
into which a ] term of a multiplet (s, L) is split in a weak magnetic

field are displaced from the unperturbed positions by the amounts

hog-m (m = /, /- 1, , -7) (4.10)

where the separation factor g is given by

i i

J(J + ^ - a in= i +-
27(7+1)

'
( }
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This is exactly the formula which was derived empirically by
Landt ; we here see the importance of the fact that the square
of the absolute value of the moment of momentum 9JI (or or @)
is calculated from the quantum number J (or L or s] by /(/ -f 1),

etc., instead of /
2

, etc., as in the older quantum mechanics.

When the magnetic field increases to such an extent that the

magnetic separation becomes comparable w'th the separation
between the terms of the multiplet we must handle both the

perturbation to which the multiplet separation is due and the

magnetic perturbation together. In order to express the small-,

ness of the term in the Hamiltonian function to which this

former perturbation is due, we introduce a factor p which will

appear in the same way as the factor o in the magnetic term
;

the case of a weak magnetic field may then be expressed by
saying that o is small in comparison with p. We can consider

o and p as variables which increase gradually from to their

actual values and follow the dependence of the separation on

their ratio. We therefore write the perturbation term in the

Hamiltonian function in the form

W pW + oW".

Since the decomposition (4.8) need not for present purposes
be expressed in terms of its ultimate constituents, the individual

electrons, we may here denote the azimuthal and inner quantum
numbers by / and j. Let the representation spaces of $), 2)

t

be tj, 3?i with co-ordinates (w,s ), x(wii) respectively. Denote
the moments of momentum 3K t,, 9J? t

of these two representations

by ,
S respectively ;

if the magnetic field has as its direction

the 2- axis, then

W" - h(L2 + 2s z). (4.12)

The co-ordinate system is again to be so chosen that the rotations

about the 2-axis appear in reduced form
;

to such a rotation

of angle <f> corresponds the transformation

the range of the quantum numbers m a and m t
is given by

m s
=

s, 5 - 1, ,

- s
;
m

l
=

/,
/ 1, ,

-
/. (4.13)

The variables of t, X 91 1
then behave like the (2s + 1)(2/ -f 1)

products

K)-*(m<) (4.14)

and are multiplied, under the influence of a rotation
<f>

about
the 2-axis, by e( mfy, where

M m s + nil.
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We now reduce , X 3) t
into its irreducible constituents 3D,.

Let the co-ordinates of the (2; + l)-dimensional irreducible sub-

space of i a X 9l|, in which the representation 3), takes place,
be denoted by

x(j\ m) (m=y,; - 1, , -/).

w is the magnetic quantum number, i.e. under the influence of

the rotation
<f>
about the z-axis x(j ; m) is multiplied by e( w<).

The co-ordinate transformation which leads to the complete
reduction of , X 3)i into its constituents X, is obviously of

such a kind that x(j , m) is a linear combination of those of the

variables (4.14) for which m* + nt
t
has the value m.

If the unperturbed system possesses no accidental degenera-
tion the separation is determined by that part of the matrix

(4.12) in which the sub-space t, X 9ij of W intersects itself.

We must therefore solve a secular equation G of degree

(2s + l)(2J + 1) ;
but the problem is materially simplified by

the fact that the perturbation term possesses rotational symmetry
about the s-axis, as the only non-vanishing elements of the

matrix W are those for which m -> m. The one secular equation
G is consequently broken up into 2(/ + s) + 1 secular equations
Gm corresponding to the possible values

of m. The degree of Gm is given by the number of possible

partitions of m into two summands m 8 -f m t
which run through

the ranges (4.13). In the case of a single electron, /= 1, we
have only equations of the first and second degrees, and the

calculation can therefore be carried through completely for this

case. 10

The roots of the secular equation Gm are the displacements
of the energy terms due to the perturbation. Since the trace

of a matrix is an invariant, the sum of the term displacements
which are associated with a definite value m of the magnetic

quantum number (the roots of the secular equation Gm)
is equal

to the sum of the terms in the principal diagonal of this portion
of W, i.e. to

27 W(m t m lf
m f m l).

(mf + mi
= m)

It is therefore a homogeneous linear function of p and o (" sum
ride "). We obtain the part due to the magnetic field by putting

p = 0; by (4.12) this is

14
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On the other hand, the formulae (4.10), (4.11) determine the

term displacements in the case in which o is small in comparison
with p. In consequence of the sum rule these two results must

agree. I and s being fixed once and for all, we denote the Land6

g-factor (4.11) by g(j], and we then have

27(w, + 2w,) = m g(j).

The sum on the left is extended over all partitions of w w t+w,
for given m, and that on the right over all values of j which
are consistent with the conditions

;
-

|m|, |nt| + 1, ; j - / + s, I + s - 1, , |/

-
s\.

g(j) can in fact be determined from this equation. For m /+s
both sums reduce to a single term

;
we then have

l+2s=(l + s)-g(l + s).

For m = / + s 1 there arc two possibilities for (m aj m t)
and

two for j : mi = /, ms
= s 1 or m

t
= I 1, ms

= s
; j
= / + s

or / + s 1. Consequently we must have

2/ + 4* - 3 = (/ -M -
l){g(l + s) + g(l + s - 1)}.

In this way we obtain recursion formulae for the successive

calculation of g(l + s), g(l + s 1), . The reader can

readily verify that the result of the first few steps agrees with

(4.11).

It is to be noted that in following the terms from a weak
to a strong magnetic field they cannot cross each other, con-

sidered as functions of the monotonic increasing parameter
o:p; the

4t

singular elements" of a unitary group, i.e. those

elements for which two or more characteristic values coincide,
constitute a manifold of three, and not simply one, fewer

dimensions. 11

B. The Lorentz Group

5. Relativistically Invariant Equations of Motion of
an Electron

We have as yet obtained no specific expression for the spin

perturbation ;
that for the magnetic effect due to an external

field was set up with the aid of the experimental facts. It is

clear that we can arrive at a satisfactory theory of the electron

only when we are able to express its fundamental laws of motion
in a form which is invariant under Lorentz transformations, as

required by the restricted theory of relativity. The solution of

this problem is due to Dirac. 12 We saw in III, 8, how the

2-dimensional representation 5)j of the rotation group, which,
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following Pauli, characterizes the covariant quantity ^ ~ (pl} i^2)

describing the wave field, can be extended to the group of

positive Lorentz transformations. ^, i/r2 play the same role as

the variables
, TJ

introduced in connection with
5)^.

Following de Broglie we took as the wave equation of a

particle of mass m in field-free space

But this equation is not in agreement with the general scheme
of quantum mechanics, which requires that only first order

derivatives with respect to the time appear. The formulation

of a relativistically invariant differential equation satisfying
this requirement is, as Dirac discovered, made possible by the

transition from the scalar wave function
ifj

to one with two

components. We seek to derive these dynamical equations
from a Hamiltonian principle.

Let

V. ft Y. - Y Y A/ * - <?yvo }
*v i ^

i ^2 y } 3

constitute a normal co-ordinate system in our 4-dimensional

space-time. If the quantity aj is of the same kind as
i/r,

the

quantities ijjS^w behave, in accordance with III, (8.16), like the

four components of a 4-vector
;

the S* are the matrices defined

in III, (8.15). Hence in particular

0-0 d*/*

are the components dsa of an infinitesimal vector
;
we are here

dealing with a linear correspondence which is independent of

the co-ordinate system employed and which sends the vector

doc over into ds. Its trace

(
5 - 2

)

x 0'V*

is consequently a scalar and its integral (multiplied by 1/i)

M = -
1

f2# Sa ^--dx (dx
- dxQ dx, dx2 dxj , (5.3)

extended over any finite portion of the world, is a quantity which

is independent of the co-ordinate system.*

* The letter M used for the material part of the action is not to be confused

with the moment of momentum.
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Although M may not be real, it is practically real in the sense

that M M is the integral of a complete divergence. For

since the 5a are Hermitian matrices,

and M M is in fact the integral of

In using M as an action we are not interested in M itself, but

only in its variations 8M caused by arbitrary infinitesimal

variations <ty of $ (0,, ^2) which vanish outside of a given
finite portion of the world (the integral is then extended over

the entire world or, what amounts to the same, over this finite

portion). The circumstances mentioned above guarantee that

8M is real
;
on writing it in the form

we find on comparison with (5.3) that

We thus arrive at the first order differential operator

V - S (5.4)

From the invariance of (5.2) it follows that this operator trans-

forms
\ft
=

(^T!, i/r2) in^ a quantity \l*'
=

($[, i/4) which trans-

forms contragrediently to $ = (^ $2) under the influence of

an arbitrary positive Lorentz transformation. If we wish to

guarantee that M is real, we may replace the original definition

by

Af = *)"
In III, 8, we found it necessary to introduce quantities

0i) 02 which transform contragrediently to $lt $2 ^n order to

be able to extend the restricted Lorentz group to the complete
group. And just as V applied to

i/r generates a quantity of the

kind ^', in the same way the
"
conjugate

"
operator

V = r s'^
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transforms 0' into a quantity of the kind 0. V'V is, as is readily

verified, the operator

4- 4-

i>*i

^ ^
Consequently equation (5.1) for 0j, 2 can be written in the form

]V0 + w 0'-0, I

1

-rV'f + w -
(5.6)

on introducing an auxiliary pair of components 0'. From now
on we denote the column of the four components 1? 2 ; 0(, 02

by ^ and employ 5 as the symbol for the transformations of

these four components as in the latter part of Chapter III
;

with this understanding the differential equations (5.6) arise

from an action integral which is composed additively of the

quantity Af, (5.3), and the invariant
[cf. Ill, (8.19)]

M' w 0T0 dx.

M and M' are also invariant with respect to interchange of

right and left, and under the spatial reflection i in the origin.

In accordance with the general scheme of quantum mechanics

the differential equations for should, as already remarked,
contain only the first derivative of with respect to time

;
the

additional requirement that it be relativistically invariant then

leads to the conclusion that it can also contain only first de-

rivatives with respect to the spatial co-ordinates. We have

here been able to satisfy these requirements without altering

the actual content of de Broglie's equation (for the components

0i> 02) I
the equations thus obtained are to be taken as the

equations for a free particle. This formal transition to first

order equations will become physically significant only when
we pass to the derivation of the equations of motion in an electro-

magnetic field with the aid of the principle of gauge invariance

developed in II, 12. According to it, if is the scalar and

0i 02, 03 the vector potential, we must replace

!<>,ld,, /K 7 \

by + (5 ' 7)
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It will be found convenient in the following to introduce the

quantities fa obtained by multiplying the potentials <f>* by the

^
factor j~. Then in

he

M= Ifo- Vj-dx (5.8)

the operator V is defined by

Because of this gauge invariance the quantities M, M' are

unchanged on replacing simultaneously

by e*V and /, by fa - , (5.10)
dXtx,

where A is an arbitrary function of position in space-time. Now
take A to be an infinitesimal function which vanishes outside

a certain finite portion of the world ; then 8M and 8M' must

automatically vanish for the variations

The complete expression

8(Af + M') ==

for the variation automatically tells us that under the assumption
that the laws of matter (5.6) are satisfied, i.e. that w 0,

M')

Hence we have as a consequence of the laws of matter

i.e. the continuity equation

^ = 0. (512)
*<x

A glance at the explicit expression for M shows that

5" = fe,0; (5.13)

these are the quantities which formed the starting-point for

the theory of the transformations of
/r

as developed in III, 8,
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and we already know that they form the components of a

4-vector which is independent of the particular space-time
co-ordinates employed. The time component

is the probability density and hence cZ c(s
l

,
5 2

,
s3

)
is what

may be called the probability current : in order to obtain the

number of particles which will on the average pass through
a surface element do in time unit, multiply the total number of

particles present into the product of the area do and the normal

component of the vector c%. On integrating the equation (5.12)
over a volume V we find that the increase in the mean number
of particles in V per unit time is equal to the mean number of

particles entering V through the surface in unit time. In

contrast to the provisional scalar theory, the Dirac theory leads in

a most natural way to expressions for the probability density, as

well as the probability current, which depend on $ alone.

On integrating

js
dxl

dx 2 dx3

over the whole of space we find that the integral is independent
of time and, in accordance with the statistical interpretation
of ^, is to be so normalized that its value is 1. Consequently,
in the dynamical law

the energy H/h is a Hermitian operator, as should be. We
shall from now on take h as the unit of action, with corresponding
units for linear and angular momentum. The result of this is

that the quantity h disappears completely from the laws of

quantum mechanics. With the usual abbreviation, p* = -. ,

( OX f

-H = To + 1 S r(p r + fr ) + m T. (5. 1 5)
C f = i

The influence of the electro-magnetic field on the matter is

taken care of by (5.9), but, on the other hand, the matter gener-

ates the electro-magnetic field in accordance with Maxwell's

equations. In order to express this explicitly we must add to

M -f M' the Maxwellian action

F = 1
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of the electro-magnetic field, where the

f = B&_f f

are the field strengths which are unaffected by the change of

gauge (5.10). F is obtained from

2

by multiplication with
^(r-J

=
-r^ (5.17) is the action in

Heaviside units, which are best adapted to the electro-magnetic
field theory. Since we have taken h as the unit of action, the

total action of our system, consisting of matter plus field, is

W = M + M' + -F

For reasons which will be apparent later the real number a/4?r

is called the fine structure constant. Whereas the variation

of the
if*

in the Hamiltonian integral \W - dx yields the equations

of matter, variation of fa leads to the equations of the electro-

magnetic field with

e-sf* = e

appearing as the 4-vector of charge and current density. The

only constants occurring in the field equations are the two
combinations

cm e2 /K onxm =
T'

a== S (5 ' 20)

of fundamental atomic constants
;

the first is a reciprocal

length and the second a pure number.

Schrodinger. in his fundamental papers cm wave mechanics,

thought he could explain the quantum behaviour of matter
and radiation

"
classically

"
by setting up a closed system of

field equations such as we have obtained above. In particular,
he held that the charge of the electron was actually

"
smeared "

over the whole of space with the density e 5. But there can
be no doubt at the present time that the field equations are not

to be interpreted in this classical manner
; they must rather

be interpreted in accordance with the statistical view-point

developed in Chapter II. The expression (5.14) for the density
then guarantees the atomistic structure of electricity. To show
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this we first remark that the charge in a volume V is represented
by e times the Hermitian form

(V)

But this is an kt

idempotent
"
form with respect to the

"
vector

"

ifi ;
its characteristic values are 1, and the corresponding

characteristic functions are those quantities i/r
which vanish

outside or inside K, respectively. The charge contained in V
is accordingly capable of assuming only the values e and 0,

i.e. according to whether the electron is found in V or not. In

order to guarantee the atomicity of electricity the electric

charge density must equal e times the probability density.
But if we base our theory on the de Broglie wave equation,
modified by introducing the electro-magnetic potentials in

accordance with the rule (5.7), we find as the expression for the

charge density one involving the temporal derivative in
ot

addition to
r/r ;

this expression has nothing to do with the prob-

ability density and is not even an idempotent form. According
to Dirac this is the most conclusive argument for the stand

that the differential equations for the motion of an electron in

an electro-magnetic field must contain only first order derivatives

with respect to the time. 13 Since it is not possible to obtain

such an equation with a scalar wave function which satisfies at

the same time the requirement of relativistic invariance, the

spin appears as a phenomenon necessitated by the theory of

relativity.

The theorem of the conservation of electricity (5.12) follows,

as we have seen, from the equations of matter, but it is at the

same time a consequence of the electro-magnetic equations.
The fact that (5.12) is a consequence of both sets of field laws

means that these sets are not independent, i.e. that there exists

an identity between them. The true ground for this identity

is to be found in the gauge invariance, for it is equivalent to

the assertion that 8W vanishes identically when
</r

and / are

subjected to variations of the form (5.11). We have

-
f{(80 80)

where aj = are the equations of matter and L* = the

Maxwellian equations. On substituting the variations from

(5.11) and integrating the last term in the integral by parts,
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Because of the arbitrariness of the gauge the number of inde-

pendent equations must be one less than the number of unknown
functions

1(1
and /.

6. Energy and Momentum. Remarks on the

Interchange of Past and Future

/. Energy and Momentum.

The complete field equations are explicitly

div < + p = 0,
- curl - 3.

Where ( and are the electric and magnetic field strengths :

p is the charge density i//r, and the components s lt
of the

current are given by
1C* / ( C. O\

S l
=

{f) Oi*(J,
' '

'. ("-^)

In addition to the differential law

^L + div -
0, (6.4)

expressing /ta conservation of electricity, we have a vector con-

servation law governing energy and momentum. A completely

satisfactory expression for the tensor representing density and
flux of energy and momentum is only to be obtained along the

lines employed in the general theory of relativity. Here we

give only the result for the density of energy c /Q and mo-
mentum

f/J, Jjj, /J), and in doing so we separate the material

from the electro-magnetic part. We have for the part referring

to matter

1

(6.5)

We have here introduced, in addition to Sp ,
the operator S'f

(p
=

1, 2, 3) which acts on all four components of $ ;
whereas
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the former subjects ^lt 2 to the 2-dimensional transformation
Sp [1 1 1, (8.15)j and 0;, J to Sp ,

the latter exercises the
same 2-dimensional transformation Sp on both pairs of com-

ponents. Correspondingly

The density of energy and momentum due to the electro-magnetic
field is given by the familiar Maxwellian expressions

<?
-

a( 2//3
- E3H2),

.
..

We find the conservation laws

3 TV/A 3 -\f

r|f = 0; g-
=

f

...
(6.7)

tt= 0# a0 U#

as consequences of the field equations. Furthermore, the tensor

t is symmetric not identically, but in consequence of the field

equations ;
in this sense we have

<& + = 0(p=l,2,3); P,
= t'

t (p,q=l,2,3). (6.8)

On combining these with (6.7) we obtain the divergence con-

ditions

p(*.g-*.g) (6>9)
~o oxa

I (*.g + *,fi) = . . , (6-10)

These results can all be verified directly, but their deeper

significance can be understood only by going over to the general

theory of relativity as mentioned above. Just as the theorem

of the conservation of electricity follows from the gauge in-

variance of the equations, the theorems for the conservation

of energy and momentum follow from the circumstance that

the action integral, formulated as in the general theory of

relativity, is invariant under arbitrary (infinitesimal) transforma-
tions of co-ordinates. In this general rclativistic formulation we
need further to erect a normal set of co-ordinate axes at each

point P of space-time, consisting of four mutually perpendicular
directions at P (" orthogonal ennuple "), in order to fix the

metric at P and to be able to describe the wave quantity $ in

terms of its components ;
all permissible orthogonal ennuples

at P are obtainable from each other by local Lorentz transforma-

tions which leave P invariant. But the rotations of these local
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ennuples can be performed in the various points P quite inde-

pendently the quantities at various points are not bound to

each other as in the special theory of relativity. The symmetry
of the energy-momentum tensor can be traced back to the

invariance with respect to such rotations. One can in fact

take it as a general rule that every invariance property of the

kind met in general relativity, involving an arbitrary function,

gives rise to a differential conservation theorem. In particular,

gauge invariance is only to be understood from this standpoint.
It follows from the transformation laws for $ that its four com-

ponents </rp
relative to the local ennuple are determined only to

within a common factor e ix of proportionality, the exponent A

of which depends arbitrarily on position in space-time ;
in

consequence of this it is necessary, in order to obtain a unique
covariant differential for

i/r,
to set up a linear form JLYa^<* which

a,

is coupled with the gauge factor contained in
ifj

in the manner

required by the principle of gauge invariance. 14

We obtain the integral conservation laws from the differential

ones by integration. We set up the integral

over a section XQ = const, of space-time and find that it is

independent of # . cJ = H is the energy and (J lt J2 , J3 )

the linear momentum. The material part is, on a simple in-

tegration by parts,

These are Hermitian forms in the
"
vector

"
</r. They again lead

us to associate the operators -.
( -, -^, ^- )

with the componentsr
i \bXi d#2 d#3/

(/i) 7t, /a) of linear momentum, i.e. to the assumptions with
which we, following de Broglie and Schrddinger, began. For the

energy we obtain (on dividing by c) the operator

without the additive term / as in (5.15) ;
the differential equa-

tions of matter are therefore

Pure Mathematical Physics



ENERGY AND MOMENTUM 221

Moreover, we must not forget that to the part due to matter
we must yet add that due to the electro-magnetic field.

The quantities

(6.11)

which are by (6.9) also constant, are the components of the
moment of momentum. We find from (6.5) that the part due
to matter is

In agreement with our earlier assumptions we here obtain the

operator which is composed of the sum of the ^-component

~[x<>~
-- #3

-
)
of the orbital moment of momentum and the

Z \ <>#3
^
dff2/

spin moment of momentum -^S[. The vector
2

~<B' =
l(S\,S'

2,S'3 ]

is actually the spin, for in accordance with the law of trans-

formation of both
i/r pairs (fa, 2), (j//t , ifj'2 ] of components suffer

the same transformation or as in the Pauli theory of the spin
under the influence of the transformation cr (spatial rotation)
of 11 2 .

On integrating equations (6.10) over the spatial section

# = const, we obtain

which we may consider as the law of inertia of energy. The

integral may be written / ,

= --- flf where ft , 2 3 are

the co-ordinates of the
"
centre of energy

M
;

the equations are

then

l
~

c*' dt*

We thus obtain the familiar mechanical law : Momentum is

equal to mass times velocity, where the velocity is to be taken as

that of the centre of energy and the mass as 1/c
2 times the energy

content of the field. Nevertheless it is advisable not to divide

by H in defining the centre of energy, as the energy density
t is here no longer positive-definite, and we cannot be certain

that the energy content // will turn out to be positive.
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Our theory is a classical field theory, the quantum features

entering only in the statistical interpretation. With this

interpretation the field laws are concerned with a single electron.

At the present stage of our development we can deal only with

the additional quantities due to the electro-magnetic field by
assuming a given external field affecting the motion of the

particle, without the particle reacting on the field
;
we must

then surrender our Maxwellian equations. The true laws

governing the interaction between electrons and quanta will

only be obtained, in analogy with II, 13, on subjecting the

system of field equations to the process of quantization, just
as was done by Heisenberg for any system of classical mechanical

differential equations.
The fact that we are led back to our original assumptions

concerning the operators representing position and momentum
is due to the particular expressions we have chosen for the

action, from which the field equations were obtained
; indeed,

it depends entirely on the part M. These original postulates
of quantum theory are accordingly of less interest from the

standpoint of general principles than we at first believed. But,
on the other hand, this connection seems to indicate that M
cannot be replaced in its role as representing the action due
to matter. M is also responsible for the fact that the charge
and probability densities agree, which is unconditionally re-

quired as a guarantee of the atomistic structure of electric

charge. These connections with the most fundamental physical
observations thus require that the action be composed additively
of M and further terms which are invariant not only under

change of gauge (5.10) as is M, but also on replacing $ by eix and

/* by / ~-
y
where A and

//,
are two independent arbitrary

oxa
functions in space-time. M f

and the Maxwellian action F are

in fact of this kind. Further relativistic invariant scalars

satisfying these conditions are readily found indeed it is not

difficult to set up the most, general action possible with the

quantities at our disposal. But we have yet to be convinced

by physical observation that the three quantities M, M'
}
F

here employed do not suffice.

//. Electric and Magnetic Spin Perturbations.

In order to be able to compare Dirac's theory with the facts,

we eliminate $[, ^ in the same way as we did in the absence

of the electro-magnetic field. We obtain the equation
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with the new definition (5.9) of V and V'. The substitutions

Sa in two variables satisfied the equations

and consequently those denoted by the same letters but operating
on all four variables obey

ooOi = ojOQ : Oj ;
o 2^>3 ^3^2 ~ iS\*

V'V contains terms of the following four types :

<
2

>

We collect together terms of types (1) and (2) to form the
44

regular term
"

in which the components of ^ are not coupled
with each other :

[The transition from lower to upper indices, i.e. from "
co-

variant
f>

to
lt
contravariant

"
components, is performed in

accordance with the equations / = / , ft = fp(p
=

1, 2, 3).]

The irregular term consists of the electric part

and the magnetic part

These become, on multiplying by the factor h and expressing

the electric and magnetic field strengths @ and in the usual

units,

We have already (II, 12) calculated the regular term for a

homogeneous magnetic field and found it to be -
(jpS). On adding

c
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the regular and irregular terms we obtain, on neglecting the

squares j\ of the potentials,

This contains the fact, which was already derived in 4 from

spectroscopic data, that to the spin
-

', twice as great a magnetic
L

moment is to be ascribed as to the same amount of orbital

moment of momentum
;
we have now obtained a convincing

theoretical foundation for this procedure. The laws governing
the interaction of a general inhomogeneous magnetic field with

orbital and spin momenta emphasize still more emphatically
the essential difference between and '. The irregular electric

term, calculated for the central-symmetric field originating in

the nucleus, is the spin perturbation.
The description of the electron given earlier, according to

which it was a composite structure composed of two kine-

matically independent parts the electron translation, with an

oo -dimensional system-space, and the electron spin, with a

2-dirnensional system space is, in view of the Dirac theory,
no longer quite appropriate. But the classification of spectra

given there is none the less valid here, for it depends only on

the fact that to the group of rotations of physical space corre-

sponds the representation $)j X ( in the total system-space.
From the field equations (6.1) as they are to be understood

for the present, i.e. as the laws of motion of an electron in an

external electro-magnetic field, dispersion phenomena can be

(approximately) calculated
; they tell us how the motion of the

electron in the normal or other quantum states is affected by
the incident light wave. From the perturbed </r

we then deter-

mine the scattered light with the aid of Maxwell's equations ;

to this class of phenomena belong in particular the Compton
and Smekal-Raman effects.

1 *
Spontaneous emission can be

handled similarly if we take the considerations of II, 13, as

justifying the following procedure : The polarization and

intensity of light emitted by the quantum jump n -> n' of the

atom is to be calculated by integrating Maxwell's equations,

where the expressions ijn/j, ^^ for charge and current density

are to be understood as ^w)
^(n

'
)

, 0<
n
>@^

n/
), ^ being the

characteristic function of the atom in the nth
quantum state.
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///. Interchange of Past and Future.

The action is so constructed that it is invariant under inter-

change of right and left ; the corresponding substitution is

*->*, *-> -*;! ,

1
, . -i

/.-/., /,->-/,;/<
p ' 2|3)

(6.12)

01 -> 01, 02 "> 02 ', 01 -> 01, 02 -* 02- J

Does a corresponding result hold for the interchange of past
and future ? The foundations of the theory lead to the hope
that it will be able to take account of the essential difference

between the two time directions, so obvious in Nature. But
Dirac has remarked that M, M r

go over into M, M' under
the influence of the substitution

*,->-*., /.->-/, (a
=

0, 1, 2, 3); ^

/ / / / /' /' /' /' f (o.loj
01~> 01> 02T>02 ; 01"> 01, 02-^~ 02-J

Hence when, in dealing with the motion of an electron in an
external electro-magnetic field, we obtain a solution

i/f
which

contains the time in the factor e~~
ivt

,
this substitution will lead

us to a new s )lution which contains the time in the factor e
lvt

; or,

more precisely, a solution of the problem obtained by changing

/ into /. But this can be done by retaining the same external

field with potentials </>
and replacing e by e. We denote such

a particle, whose mass is the same as that of the electron but

whose charge is e instead of e, as a
4(

positive electron
"

;
it

is not observed in Nature ! It follows from what has been said

above that the energy levels of such a particle are hv, where

hv are those of the negative electron. Disregarding this differ-

ence in sign, the two particles behave the same. The electron

will possess, in addition to its positive energy levels, negative ones

as well, the latter arising from the positive energy levels of the

positive electron on changing signs as above. Obviously some-

thing is wrong here
;
we should be able to get rid of these negative

energy levels of the electron. But that seems impossible, for

under the influence of the radiation field transitions should occur

between the positive and negative terms. That we have twice

as many terms as we should is obviously related to the fact

that our quantity </r has/imr instead of two components (satisfying

first order differential equations). The solution of this dif-

ficulty would seem to lie in the direction of interpreting our

four differential equations as including the proton in addition

to the electron.
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The substitution (6.13) transforms the terms M, AT of the

action into M
,

M'
,
but leaves the Maxwellian term F

unaltered. Our field equations as a whole, i.e. when we also

take into account the reaction of the particle on the radiation

field, are consequently not invariant under this substitution.

However, there does exist a substitution which reverses the

direction of time and which at the same time leaves all terms in

the action invariant. We mentioned in III, 8 that the ex-

pression (5.13) formed from a
i/r

with two components takes on
the sign S : 8 = 1, 8 P

=
l(p

=
1, 2, 3) on going over from

0i> 02 to $2l $i. Hence if w is a quantity which transforms in

the same way as $ then

Sa aj -> Sa w Sa ;

on applying this to o> = J^~ d#/j we find that
ft
ox

ft

/

0.

Hence if we make in addition the substitution

*o ~> *o, *p -> ^P (/>
== 1

, 2, 3)

then

and consequently M, formula (5.5), remains invariant. In the

presence of an electro-magnetic field its components must

change signs in accordance with

/o-^/o, /->-/ (p=l,2, 3).

We have thus found that M, M' and F all remain invariant

under the substitution

(6.H)

This shows that the past and the future enter into our field

theory in precisely the same manner in spite of the fact that

the sign in the exponent of the time factor e~ ivt of a solution of

the quantum problem is unchanged by the substitution (6.14).
We must of course suspend judgment as to whether the laws

governing interaction between photons and electrons allow us
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to distinguish between these two directions in time until we
have carried through the quantization ( 12).

7. Electron in Spherically Symmetric Field

We now proceed to the discussion of the behaviour of an
electron in a spherically symmetric electrostatic field in Dirac's

theory.

/. Dirac's Conservation Theorem.

From the definitions follow immediately the commutation
rules :

SVT = - TS P> SPT = TSP (p
=

1, 2, 3).

We need further the results

Ojo^ - I, ^2 3
~~~

2 3
~~~~ ^^i

and the commutation rules

LI Pi
-

Pi I-i
= 0, (J>) = Pi LI + p 2 U + p3 L3

= 0,

for the components of linear and angular momenta p (p ly p^ p 3]

and S = (L l5
L2 ,

L3).

In a spherically symmetric electrostatic field f1 =f2 =f3
= Q

and / = is a function only of the distance r from the centre.

With the aid of the formulae given above it is easily shown that

commutes with 0, 7', (') and consequently with each term in

the expression

-H -f (p) + wor (7.1)

for the energy //. Indeed, this conservation law for the total

moment of momentum 9ft = fi + 5
' was already known to

us from general considerations. We further find that

commutes with and T, but that

(@'fi)(@
f

|>) + ('^('fi) ^ -
2(@'J>)

or
- 0.

Hence (@'fi) + 1 anti-commutes with (S'p) and therefore also

with (p) ;
its commutation properties with respect to the three

Pure Mathematical Physics



228 APPLICATIONS OF GROUP THEORY

terms of (7.1) are therefore the same as those of T. Hence on

setting

+ 1 = kT, (7.2)

k is a scalar which commutes with the energy H (where by scalar

we mean invariant under the group of rotations of space).

Consequently we can decompose the system-space of the electron

into irreducible sub-spaces ${k associated with the rotation

group, in such a way that the quantity k, which we call the

auxiliary quantum number, as well as the energy //,

possesses a definite value in each of the sub-spaces. Now

(<3'S)
= {L\ + + } 4 {S;S3(L2L3

- L 3LZ) f 4-
}

= S2 - (S'A ++)=>_ (')
and consequently

1)2 _~
A

J
"^

i \
N ' "^y i

-

y
^

i 9"*^ / ' A vvv
i A

I~ e ~
4'

This agrees with

when we put

\k\-\, \k\=j +
\.

(7.4)

Accordingly, the auxiliary quantum number k is a non-vanishing

integer. The conservation theorem (7.2) goes beyond (7.3) in

giving us in addition the sign of k. For a given half-integral j

the two values k = + ( j + 5) are both possible; they must
\ ^/

correspond to the two possibilities I = j
- of our previous
-6

notation. The single quantum number k replaces the two /, j-.

II. The Differential Equation for the Determination of the

Characteristic Values.

Since the field is spherically symmetric, it suffices to carry

through the calculation for the point x = 0, y = 0, z -- r. At
this point

J
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and the Dirac conservation law (7.2) becomes

*;-*,]
(7.5)

together with the equations obtained from these by interchanging
the two pairs lf ^2 and 0( f 02 of components. The differential

equation (6.1) for the characteristic vector
i/r,

which contains

the time only in the factor e~ ivi
,
has as its four components the

two

S2

(7.6)

and two others of analogous structure
;
we have here written

E = -, E - $ = 7.

The derivatives with respect to # and y which appear in (7.6)

can be eliminated with the aid of (7.5) ;
the resulting equations

are

.

"-';> + -. + 7
where

/=^i(0, 0, r), ff
-

0;(0, 0, r).

The remaining two equations are obtained by writing (i//2, <A2 )

in place of (fa, fa). At an arbitrary point P = P(x, y, z) the

first and third components of
iff satisfy the equations (7.7) in

a rotated co-ordinate* system whose positive s-axis passes through
P. We shall find it convenient to introduce r/and rg as variables

in place of / and g, as

r dr \r dr;

If we wish to avoid the explicit appearance of i in the equations,

we may write

rf
'= v + iw, rg

= v iw

Pure Mathematical Physics



230 APPLICATIONS OF GROUP THEORY

and obtain, finally, the fundamental equations

T7 dw k
Uv m v w o,

dr
u

r
'

Uw + -T- + m w v 0.

(7.8)

///. Spherical Harmonics with Spin.

Let /(r), g(r) be a solution of equations (7.7) ;
then in the

rotated co-ordinate system

01 = / P, 01 = g ' P i 02 == / - T, </T2
= g . T

where the factors p, r are constants independent of r. On
returning to the original co-ordinate system each of the pairs

0i, 02 ; 0i, 02 undergoes the transformation a associated with

the rotation s. Consequently

0i = /Pi + g'

02 = 02 = (7.9)

in which f and g depend only on r, and the factors
/>,

r only on

direction, i.e. on the spherical co-ordinates 0, (f>
introduced by

setting
x -\- iy

= r sin e**, z = r cos ^
;

the coefficients in (7.9) must further satisfy the conditions

Pl (\ cos 6} P2 sin 0*-* = 0, (7.10)
Ta (l + cos 0) + r2 sin 0e~ i+ = 0.

On substituting the expression for 2 in polar co-ordinates

[II, (4.10)] into the Dirac conservation law, we are led, with

the aid of (7.9) and (7.10), to the differential equations

sin 0^ +

a*T i
sin 0-^

(7.11)
- - cos =

We have thereby accomplished the transformation of the Dirac

wave equation into polar co-ordinates. (7.9) corresponds to the

substitution ^r=/(r)y, of the scalar theory; in place of the

single factor /depending only on the distance r we have here the

pair /, g and in place of the surface harmonic YI depending
only on the direction we h#ve the matrix

Pi
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The equations (7.11), together with the conditions (7.10), define
the

"
surface harmonics with spin of order k

"
; they are quite

independent of the potential 0. The characteristic values E of

the equations (7.7) or (7.8) are the energy levels associated with

quantum number k.

As in the theory of the ordinary spherical harmonics, we
here again seek out those spherical harmonics with spin which
contain the meridian angle only in the multiplicative factor eim* :

Pl
= eim* (sin 0)~

m
P, TI = eim* (sin 0)~

m
Q. (7.12)

Substituting these expressions in (7.11) and taking z cos 8 as

the independent variable, we find

(1
-

z)
=-.- mp + kQ

(I /*>

(1 + 2)^
:-- mQ - AP.

We denote the solutions P, Q of these equations which lead to

non-singular functions
/>,

r on the sphere more precisely by
P(

i
n
\ 0i

w)
- It: suffices to consider the case k > 0, for

( P, Q)

is a solution of the equations obtained by changing k into k :

p^l(z) = -
Pj^fc), Q^\(z) = Q (

?\z). (7.14)

Furthermore,

__ _
dz

J

dz

for the derivatives of P(w
), g (m) satisfy the differential equations

(7.13) with w 1 in place of m. Form = k, P ~ 1, Q = 1

is a solution which satisfies all continuity requirements on the

sphere, since the multiplicative factor

(sin 0)'Vm* =
(x iy)"

m

is finite for negative m. Consequently we find polynomial
solutions of (7.13), the degrees of which are 0, 1, ,

2k 1

corresponding to the values m = k, k -f 1, ,
k 1.

The solution for m = k 1 is

P(z) = (1
-

z)
k
-i(l + z)\ Q(z)

-
(1 + z)*-*(l

-
*)*.

We thus finally obtain the following explicit expressions for the

spherical harmonics with spin :

(7.15)
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where p = k 1 m. They behave very much like the

ordinary spherical harmonics. The following equations are

also of importance :

Z
)
=

(__ 1)P . Q<f)(z) 9 Qff(- z]
==. (_ \]P . P^(z) (7.16)

8. Selection Rules. Fine Structure

/. Selection Rules.

In a solution defined by (7.9), (7.12) *fi lt
like p x and r

lt

contains
(f> only in the factor eim* and

</r2 ,
like p 2 and T

2> only in

the factor e^m h 1)0
; correspondingly for ^{, ^2- Hence

The 2-component of the moment of momentum in the state

(k, m) is accordingly m + =. This change in the meaning of
Z

the quantum number m is to be carefully noted : m + ~ runs
2i

through the values

jy _ ft _ _ __^ \y \ /j /j __ 1 . . ^

2' 2'
* * M

2
>

as it should.

In order to obtain the selection rules for the possible transi-

tions
(fe, m) ->

(fe', w') and to obtain the corresponding intensities

we must calculate the matrix which represents the energy of

interaction between the atom and radiation in terms of the

co-ordinate system determined by the characteristic functions

^f
(n)

defining the quantum states n of the atom. Proceeding
as in II, 13, we see from (5.15) that this matrix is

The vector e c here plays the same role as q there. The in-

tensities are essentially determined by the elements (nn').

the three components of which are

S9 (nn')
=

The selection rules are merely consequences of the fact that

is a vector. We first obtain the old result for m and j from
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considerations involving the proper rotations of space. The
rule for ; asserts that the auxiliary quantum number k may go
over into

(*-t). k, (k + l). (8.1)

To the reflection i corresponds the interchange T of the two

pairs (ifi lt i/r 2), (i/r{, ^2). In polar co-ordinates this reflection

consists in the transition from (0, </>)
to

(IT 0, TT + </>); z = cos 6

is thereby transformed into z and the factor e
im* takes on the

sign ( l)
m

. In accordance with (7.15) and the expressions
for p ly

r l ; p 2 >
T2 this results in an interchange of p lt

r l with

possible change of sign, as represented by the substitution

(-i) p+rn \fc-l

withand the same for p 2 ,
r 2 . By (7.9) we therefore have for

auxiliary quantum number k :

TM-x, -y. --s) = (-l)*-V(*,y,s).

The sub-space SKj. thus has the signature 8
( 1)*

-1
;

this

result was derived under the assumption k r> 0. On replacing
k by k and applying (7.14) we find in place of (7.16) :

/x-)(_ Z
)
= (- \y^Q (

?\(z}, Q(m
\(~ s)

= (- l)
p+lP(

l(z).

The signature corresponding to auxiliary quantum
k (k > 0) is accordingly ( l)

k
. On setting

number

/ k when k is negative ( j
= k -, / ^ ),

\ 2t L]
j

= & 1 when k is positive 2

(8.2)

both possibilities are included under 8 =
( I)

1

,
or we could

also write 8 == sgn k
( I)*""

1
. The only coefficients occurring

in a proper vector are those corresponding to transitions in

which the signature is reversed. Our selection rule (8.1) for

k is thus narrowed down to

k -> k - 1,
-

fe,
k + 1. (8.3)

The following table gives the value of the auxiliary quantum
number k associated with each possible combination of / and j :

I I 1 2 3 4 -
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II. Transition to the limit c -> oo .

In order to return from relativistic to ordinary mechanics
we must pass to the limit c~>oo. Before applying this to

equations (7.8) we must replace t/, v by m -\ , cv
;
we then

,
, f

. U. . .,2m
have, on neglecting -^

in comparison with
-j- 9

/ d k\Uv = ( 7- "| }W,
\dr r!

L/ d k \= -*U-r> ;

on eliminating w we obtain

h f d k\ / d

or

(
"

Vfv
' "

y

} v + Uv = 0.
2m\dr2 r2 J

On introducing / by (8.2) we have in both cases k(k l)
=

l(l+l).
Hence in the limit terms with the same /, and therefore those

with auxiliary quantum numbers k and k 1, coincide with

that one associated with azimuthal quantum number / in the

scalar theory of Chapter II. The doublet found in alkali spectra
and in general the multiplet structure of spectral lines is

accordingly explained as a relativistic phenomenon.

III. H, He^, -.

In a Coulomb field with nuclear charge Ze we have

-0=^.
employing Heaviside units, which are better adapted to a field

theory. In the following calculations we shall denote the
*f

multiple -r- of the fine-structure constant simply by a itself,r
4-77 4?r

and we shall set m c = v . In order to integrate equations

(7.8) we first perform the substitution

v = e~Pr
F, w == e~Pf G

}

where j3
is a positive constant. Our equations are then

(8.4)
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Our method will lead to a solution if we choose the constant p
in such a way that the determinant of the linear combinations
of F and G on the right vanishes :

We now seek a power series solution

where the exponent jz begins with an initial value
/z and runs

through the values /x , /x + 1, /x + 2, . On substituting
these in (8.4) we obtain the recursion formulae

The initial exponent //,
=

/x is determined by the fact that the

determinant of the coefficients of #M ,
&M on the left must vanish

for this value of the index :

/**
- k2 + a2 - 0-

A
t = V/z 2 - a2

.

Because of the manner in which
j8
was determined in (8.5) there

exists a linear relation, with coefficients -
-}- -, 8 between the

1

c c'
'

right-hand sides of (8.6) which is satisfied identically in aM _i, &M-I-

Hence for all /z

( I ) [(/^ ~f~ ^)^M
~~~ a ^M] "f" j^[

a ^M "h ([* ^)^M!
r=r ^

\C C /

or

/if i \ n r , i* i* \
~

- o.

(8.7)

The power series will break off with the term with exponent \i

if on replacing a^..^ b^^ by aM ,
bu the right-hand side of (8.6) is

made to vanish. The condition for this is that

= 0; (8.8)

it will be satisfied in virtue of (8.7) if the determinant of the

coefficients in these two equations vanishes :

C
-
?)[G ' ?> + *> + "]-^- *> -G + ?)]-
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or by (8.5)

ft,, -Aa -
pp, ~ u, -p

-

Cp OK.

Since the exponent ^ with which the series break off must be
of the form p,Q + ^, where n is a positive integer, we obtain the

fine structure formula

(8.9)

The solution
</r

of our differential equations, for the char-

acteristic values v = cE defined by (8.9), is of the form

e~pr . rMo .

(polynomial of degree n in r)

and satisfies the condition that the spatial integral of
|</r|

2 con-

verge in the neighbourhood of the singular points r 0, oo.

These E consequently constitute the discrete term spectrum of an

ion with nuclear charge Ze and having but one electron outside

the nucleus. If we neglect the small constant a in comparison
with k, E depends only on n + \k\. This fine structure formula

further tells us that the two terms with auxiliary quantum
numbers k and k, or the two terms with the same j and for

which / = j ^, exactly coincide. That this is in fact found
2i

to be the case has already been mentioned in 4. Equation

(8.9) has had a remarkable history. It was first derived on the

basis of the older quantum theory by Sommerfeld and, at about

the same time, verified by the experiments of Paschen ; it was

perhaps the greatest triumph of that theory, next to Bohr's

explanation of the Balmer series and his calculation of the

Rydberg number from universal atomic constants. The new

quantum theory at first destroyed this beautiful agreement,
as in its scalar form it led to (8.9) with the half-integral quantum
number j in place of the integral \k\.

So mmerfeld's original

formula was only completely re-established with the advent

of the Dirac theory here discussed. The quantum number k,

which was used in the older quantum mechanics in place of /

and which may assume the value 0, has also re-appeared and

is now supplied with a sign. But on the other hand, the number
of components in the fine structure is now greater than in

Sommerfeld's theory, as in addition to the transitions k-*k 1,

k + 1 we may now also have k ->/?; this addition is also in

agreement with experiment.
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Our conclusion that (8.8) was to be satisfied in virtue of

equation (8.7) for the unknowns a^ b^ assuming that the deter-

minant of the two equations vanished, fails when both coefficients

of equation (8.6) are zero :

v + VQ __ _ a __ \L k

It follows from this that then
//,
= Vk2 a2

,
or n = 0, and that

/x + k < 0, or k < 0. There actually exist no terms n 0,

k = 1, 2, . For the coefficients M ,
feM of the beginning

term in the corresponding solution, which is at the same time

the end term, would by (8.6), (8.8) necessarily satisfy the equations

^+^.0^0
C

or

a
/LI

k v v

. T~&
^

a
=

48
'

and this is impossible because of the condition
|y|
< v .

16

In accordance with the foregoing we may describe the normal

state of the hydrogen atom ; n = 0, k 1 (/ 0), as follows.

We take the quantum number m, which may assume either of

the values 0, 1, to be 0. Let a = 0-532 A. be the radius of

the first Bohr orbit and a = 7*29 10~ 3 the fine-structure con-

stant. 1/4, */r2 ; 0/, 02' are obtained by multiplying the radial

function
\ / \ r Ift /I /wl 1

A(r)
=-7. rxl--l

with the factors

(1 + Vl ~ a2
) + za cos 9, za sin

(1 + \/l a2
)

za cos 0, za sin

01,

01, 02-

2

We find from these expressions that the probability density
is distributed spherical-symmetrically in accordance with the

law

P - [AW]
2

.

The normalization is here not chosen in such a way that the

integral of p over all space is unity ;
it is actually

We have already seen that in a certain sense the probability

density multiplied by e represents the distribution of charge
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in the atom. Considering the probability current as deter-

mining the convection of this continuous charge distribution p,

we find that it represents a circulation about the 2-axis with

velocity <x.c sin (occ is the velocity of the electron in the first

Bohr orbit on the older theory). On giving the axis of rotation

all possible directions $ runs through the 2-parameter family
of characteristic solutions for which n = 0, k = 1

;
we may

take as a basis for this family of solutions the above (m = 0)

and that for which m = 1, representing a circulation in

the opposite direction.

C. THE PERMUTATION GROUP

9. Resonance between Equivalent Individuals

The Hermitian forms Q, which represent in system-space all

possible physical quantities of a given system, constitute a

totality 2 within which addition and multiplication is defined.

If S were reducible we could choose our co-ordinate system in

system-space in such a way that all Q would be simultaneously

completely reduced
;
these individual parts into which the whole

would be divisible would then each constitute solutions of the

quantum problem which were merely accidentally joined to-

gether to form the given solution. In accordance with the

fundamental Aristotelian postulate of
"
nihil frustra

" Nature

could hardly be expected to indulge in such a superfluous luxury.
Hence we propose the thesis that S is an irreducible system. On
introducing as fundamental quantities the canonical variables

as in II, 11, this assumption contains the requirement that it be

impossible to choose co-ordinates in system-space in such a way
that the 2f matrices q^ -, qf ; pi, ',/>/ are simultaneously

completely reduced. This postulate is to be added to the Heisenberg
commutation rules as an essential supplement.

In accordance with Burnside's theorem [III, 10], which

we carry over without scruple from spaces with a finite number
of dimensions to those with infinitely many, the irreducibility

postulate allows us to assert that there can exist no linear

homogeneous relation tr(AQ) = between the components of

Q which is satisfied for all Q. Since in the domain of the (2's

not only is multiplication possible as presupposed in Burnside's

theorem but also addition, we arrive at the conclusion that all

Hermitian matrices in system-space are contained in E. It is

perhaps desirable to express our requirement directly in the

form : any Hermitian form represents a physical quantity of

the system. In accordance with II, 7 there is associated with
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each statistical ensemble a positive definite Hermitian form A
in such a way that tr(AQ) is the expectation of the quantity

represented by Q. Burnside's theorem asserts that the equation

tr (AQ) = tr (A'Q)

can be satisfied for all Q only if A = A', or it is impossible to

distinguish between the two statistical aggregates represented by
the positive definite Hermitianforms only ifA = A'. In particular
it follows from this that the states represented by two rays in

system space are physically different if the two rays are distinct
;

this was to be expected, or even required, from the outset.

These consequences show the naturalness and cogency of the

irreducibility postulate, from which it can conversely be deduced.

The states of physical entities I which are fully equivalent, as,

for example, the electrons in an atom, are to be represented by
vectors J = (#,-)

or rays in the same system-space 9ft. If two
such individuals unite to form a single physical system P the

vectors of the corresponding system-space 9ft X 9ft = 9ft
2

are,

in accordance with the general rule of X -multiplication, the

tensors (xik)
of order two. But, by III, 5, 9ft

2
is reducible into

two independent sub-spaces {9ft
2
}
and [9t

2
],

the space of anti-

symmetric and the space of symmetric tensors of 2nd order.

Physical quantities Q of I2 have only an objective physical

significance if they depend symmetrically on the two individuals.

This requirement is expressed in terms of the elements of the

Hermitian form

Q = ^iM'*' ****'*

by the symmetry condition

On reducing (xik) into its anti-symmetric and its symmetric
parts,

Xik = x{ik} + x(ik) (9.2)

Q is reduced, in virtue of (9.1), into two Hermitian forms in

x{ik] and x(ik) respectively. For on substituting (9.2) into Q
we obtain four terms : those in which

{9ft
2
}, [9ft

2
]
intersect them-

selves, and the two in which
{9ft

2
} intersects

[9ft

2
]
or conversely.

These last two then vanish, for if we interchange the dummy
indices i with k, i' with k' in

[Q}=Zqik>i
.

k.x{ik} X(i'k')

and then replace

?.*v. *{**} *(*'*') by ?,t.i'r.
-
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we find [Q] = [0], or [Q] = 0. The totality of Hermitian
forms Q which represent the quantities of P depending sym-
metrically on the two individuals is therefore not irreducible

;
it

can be reduced in accordance with the decomposition

$2 = {W} + [JR2] (9.3)

of the space 9ft
2

.

In particular, every possible interaction between the two

individuals depends symmetrically on them, even when other

physical elements, such as a radiation field, are also involved.

Hence if 72
is at any time in a state contained in one of the

sub-spaces {9t
2
}
or [3t

2
]

it is for all time impossible to get it out

of this sub-space by any influence whatsoever. Again, we expect
Nature to make use of but one of these sub-spaces, but the

irreducibility postulate offers us no clue as to which one she

has decided on.

Take as co-ordinates in the system space 91 of the individual

/ the principal axes e { of the energy associated with the char-

acteristic numbers E t . Disregarding the interaction between
the two individuals for the moment, the system 7 2 has as energy
levels Ef + Ek with characteristic vectors e

t
- X C

fc
= e ifc ;

each

characteristic number of the type E
l + E appears twice, and

the corresponding characteristic space is spanned by the vectors

C 12 and e21 . On introducing the interaction as a small per-
turbation the two states e 12 and e 21 are in resonance with each

other. Denoting the components of the total Hamiltonian
function by H(ik, i'k'}, the transformation of the sub-matrix

H(\ 2, 1 2) H(\ 2, 2 1)

H(2 1, 1 2) H(2 1, 2 1)

to principal axes, as required by perturbation theory, can in

the present case be performed in a manner which is universally
valid

;
we need only to replace the fundamental vectors e 12 , 2 i by

(9.4)

Denoting H(\ 2, 12) = H(2 1, 2 1) by hv and the numbers

H(l 2, 2 1)
= //(2 1, 1

2),
which must be real in virtue of the

condition H(l 2, 2 1)
= H(2 1, 1 2) of Hermitian symmetry, by

Aa, the resonance equations become

.- +("*12 +**,) = 0,
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om which it follows that

(*t.
~

*ai) = _ t> _ g)(yit
_^

-
12 21 .

'aking as initial conditions #12
=

1, xn = for t = 0, we find

/v _ v /~~ (*-" <*V -v I <v ^~ t (*+<*)< ^Q P\\
#12 *21 ^

> #12 I ^21 *
i ly '3J

|2 -

^e see from this how the two states e 12 ,
e 21 alternate back and

>rth with the beat period ,
whereas the components (9.5)

long the axes (9.4) have always the same constant absolute

lagnitudes.
The only characteristic numbers associated with the system

Dace {9l
2
}
are those of the type E l + 2>

each of which appears

Kactly once, but the sub-space [9ft

2
]
has simple characteristic

umbers of the type 2E l in addition to these. Hence if Nature
ecides in favour of

{9ft
2
} both individuals can never be sim-

Itaneously in the same quantum state with energy E assum-

ig this energy level for the individual system is non-degenerate.
hat E l -f- E2 occurs only once in

{9ft
2
}
and only once in

[9ft
2
]

leans : the possibility that one of the identical twins Mike
nd Ike is in the quantum state E l and the other in the quantum
:ate E2 does not include two differentiate cases which are

ermuted on permuting Mike and Ike
;

it is impossible for

ther of these individuals to retain his identity so that one of

lem will always be able to say
tl
I'm Mike T1 and the other

I'm Ike.
M Even in principle one cannot demand an alibi

F an electron ! In this way the Leibnizian principle of coin-

dentia indiscernibilium holds in quantum mechanics. 17

On passing from 2 to / equivalent individuals / it is not so

isy to reduce the representation (c)^ of the complete linear or of

le unitary group in system-space 9ft into its irreducible con-

.ituents
;

we shall go into this matter in the last chapter.
evertheless we know from III, 5, that the anti-symmetric
id the symmetric tensors of order / with components

x{k lkn kf} 9 x(k lk^ kf),

jspectively, each yield such an irreducible representation.

physical quantity Q of the total system V which depends
fmmetrically on all / individuals will be represented by an

[ermitian operator Q, the coefficients q(k lk^ kf ; k{kz /)
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I

of which are unchanged on subjecting k^k^ kf and k[k'2 kf

simultaneously to the same permutation. It is evident that such

an operator always sends an anti-symmetric tensor x{k lk^ kf]

into an anti-symmetric tensor x
r

:

Hence the sub-space {ffl} of anti-symmetric tensors is reduced

out of the system-space ffl of /', determined in accordance with

the general rule of X -multiplication, in such a way that if //

is ever in the system space {ffl} it remains there forever, regard-
less of what influences may act upon it. The sub-space |W]
of all symmetric tensors x(k] of order J can similarly be separated
out of 9t/. The energy level E l + 2 + + Ef ,

which is

/1-fold degenerate in ffi, appears in {9t/} as a simple level. Only
characteristic numbers of this type appear in {3i/j, but the

characteristic numbers of [W] are all numbers which can be

obtained by summation of / distinct or non-distinct energies E.

If the system space is ?t-dimensional, {31^} is only possible
if / fg n. If E is an n-fold energy level of the individual I then

the quantum states with energy E constitute an n-dimensional

sub-space 9R(). If it should happen that only {9^} is realized

in Nature, then in view of the foregoing it would be impossible
to have more than n individuals of the system V in the quantum
state E.

The reduction of ffl to {W} or [W] involves relationships
which frustrate any attempt at description in terms of our

old intuitive pictures with their orbits and billiard-ball electrons.

But the difficulty enters already with the general composition

rule, according to which the manifold of possible pure states

of a system composed of two parts is much greater than the

manifold of combinations in which each of the partial systems
is itself in a pure state.

10. The Pauli Exclusion Principle and the Structure
of the Periodic Table

One of the most fundamental facts of Nature, the ordering of
the chemical elements in the periodic table

}
can be understood

only with the help of these considerations. We go from one

atom to the following, which we denote by A, in two steps :

the first is preparatory and consists in increasing the charge
on the nucleus by 1, and the second anjd final step consists in

adding an electron to the ion A+ so obtained. To obtain the

normal state of A this additional electron must be bound as

tightly as possible, i.e. the energy of the total system A must be
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a minimum. If we disregard the mutual perturbations of the

electrons for a moment, although they may be very considerable,
we might expect to find every electron in an unexcited atom in

the lowest energy level, i.e. with principal quantum number n = 1.

But instead we find the following : The 1 electron of H and the

2 electrons of He are in the Is orbit, i.e. they are in the quantum
state n = 1, / 0. But the next 2 electrons, which are added

in going over to Li, Be, are in a 2s orbit, and the additional 6, the

addition of each of which gives rise to one of the elements from

B to Ne, enter the 2p orbit. Then follow Na, Mg, each with a

new electron in the 3s state, the elements from Al to A, the

additional electrons entering the 3/> orbit, etc. These facts

are readily seen on writing the wave number of the lowest

S term in the form A'/n
2
* ;

in II, He, Li the "effective

quantum number" n+ has the values 1*00. 0*74, 1*59. That

n+ sinks on going from H to lie is understandable in view of

the
"
screening

"
effect of the original electron on the new one.

We should expect that if the next electron also went into the

orbit n 1 the corresponding value of n+ would be something
like 0'59, but we find instead a number which is greater than

this by unity. The same occurs on going from Be to B or from

Mg to Al
;

the normal states of these atoms are formed by the

valence electrons entering 2p or 3/> orbits because the 2s or 3s

orbits are already
"
occupied," and if the valence electron is

raised to an s state by excitation, it can only be raised to one

for which n ^ 3 or n ^ 4.* Obviously the essential features

of the regularities expressed in the periodic table depend on this

mysterious numerus dausus for the various states with principal

quantum numbers n 1, 2, and on the fact that in conse-

quence of this the electrons in the atom are added on in definite

layers or
"

shells." Stated more precisely, in an ns orbit

(n
=

1, 2, )
there is room for but 2 electrons, in an up orbit

(n = 2, 3, )
for but 6

;
in general the situation is described

by Stoner's rule : there can be at most 2(2/ + 1) electrons in a

state with quantum numbers n, I.

On taking into account the duplicity caused by the spin we
sec that this number is exactly the dimensionality of the sub-

space 9t(w/) in the system space of a single electron. Neglecting
the spin perturbation, which is indeed much smaller than the

* The physical significance of the
"
true principal quantum number "

n is contained in these considerations : we think of the term in the Hamiltonian
function which represents the energy of interaction between the various
electrons as multiplied by a numerical factor A and let A decrease steadily
from i to o

;
this virtual adiabatic process sends each electron into a definite

hydrogenic orbit with a principal quantum number n, the
"
true quantum

number "
of the electron.
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mutual perturbations of the electrons, the energy level associ-

ated with this sub-space is 2(21 + l)-fold degenerate. This

degeneracy can be removed by the introduction of the spin

perturbation and a weak magnetic field
;

the energy level is

then broken up into 2(21 + 1) simple components distinguished

by the quantum numbers

;
= /

2'
m ^-J>1

~ ]
>

' '

> 1-

Stoner's rule led Pauli to postulate the exclusion of equivalent
orbits : it is impossible for two electrons in an atom to be simul-

taneously in the same quantum state (n, /, j, m). This shows
that 3t/ is obviously not the system space of the physical system
If in which / electrons revolve about a fixed nucleus, but that

the reduction to {W} takes place : Nature has decided in favour

of the reduction to the space of anti-symmetric tensors, at least in

the case of electrons. In view of the considerations advanced in

the previous paragraph this principle leads conversely to Stoner's

rule. 18

If the formation of one atom from the preceding one were
an entirely regular process the occupation of the various states

would take place in accordance with the following table, the

lower row of which indicates the number of electrons captured,
on going from atom to atom, by the orbit immediately above :

Is; 2s, 2p; 3s, 3/>, 3d; 4s, 4/> f 4d, 4/;

2; 2 + 6; 2 + 6+10; 2 + 6 + 10 + 14
;

This would indeed be the case if we could increase the charge on
the nuclei by some large fixed amount, for the mutual perturba-
tions of the electrons could thus be made arbitrarily small in

comparison with the Coulomb attraction of the nucleus. But
even a rough calculation shows that these perturbations are

actually too considerable not to lead to displacements in the

above table, i.e. to changes in the order ?ii Which the various

shells arc filled. For example, after the 3p shell is filled, which
is accomplished with A, the next 2 electrons go into 4s states

to form K, Ca, and only then do we find electrons entering the

3d orbits to form Sc, Ti, . For details consult the books

by Hund, Pauling and Goudsmit or Ruark and Urey mentioned
in the Introduction.

It is not the purpose of this book to report on the extensive

empirical data of spectroscopy, nor to show how the two main

principles required to lead beyond the general scheme of quantum
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mechanics to the interpretation of spectra were wrested from
this material

;
I here refer to the introduction of the inner

quantum number; in addition to the azimuthal /, or the spinning

electron, on the one hand, and to the reduction of W to {3}'}

by means of the Pauli exclusion principle on the other.

Millikan begins his report to the American Philosophical Society
on

" Recent Developments in Spectroscopy
"

(Proc. Am. Phil.

Soc. 66, p. 211 (1927)], with the words :

" Never in the history
of science has a subject sprung so suddenly from a state of com-

plete obscurity and unintelligibility to a condition of full illu-

mination and predictability as has the field of spectroscopy
since the year 1913.

" The theory of groups offers the ap-

propriate mathematical tool for the description of the order

thus won.
The lines of the optical spectrum are caused by quantum

jumps of the electrons which are most loosely bound. In the

alkalies Li, Na, K, the one involved is accordingly in the

state 25, 3s, 4>9, . We also understand why their cores

Li f

,
Na+

, K\ are spherically symmetric, and therefore

why their spectra may be approximately calculated in terms

of the motion of an electron in a spherically symmetric field
;

the real reason behind this is the following. That an electron

has the quantum numbers w, / means that its state is in a

sub-space 9R t
of A 2(21 -f 1) dimensions. The sub -space

{9ti X 8Ri X X 9ftJ with A factors, as obtained by the anti-

symmetric reduction of 3R, is \-dimensional and the rotation

group induces in it the 1-dimensional identical representation ;

i.e. a shell consisting of A electrons in the stale n, I acts spherical-

symmetrically ;
its presence does not increase the manifold of

terms. Hence the
"
closedness

"
of those elements with which

a shell is completed ;
the rare gases, which precede the alkalies,

are elements of this kind. But we should also expect Cu, Ag, Au
to have alkali-like spectra, as they contain but a single electron

in the s state, while all the others are bound more tightly in

a
"
closed

"
configuration with an external field which is spheri-

cally symmetric. The valence of the elements must obviously
find its explanation in these terms

; indeed, it gave the clues

which originally led to the discovery of the periodic table.

But only in recent times have we been able to call on the assist-

ance of spectra, interpreted and arranged with the aid of atomic

theory by Bohr and others, and they have verified the principal
features of the table, while modifying, supplementing and

improving its details.

The consequences of the Pauli principle for the term analysis
of atomic spectra will be discussed in detail in Chapter V,
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particularly in 15. We here mention briefly the results for

the case of 2-electron spectra /= 2.

Just as the alkalies may be treated as if they were but

1-electron atoms, in dealing with the alkaline earth metals we
need only take into account the two most loosely bound electrons

which occupy an s orbit outside a spherically symmetric closed

shell. As before, we obtain one singlet and one triplet term

(nl, nT ; L)

whose total azimuthal quantum number L assumes the values

/, = /+/',/ + /'- 1, .... |

/_/'
|

assuming that the two quantum states (nl} } (n'l
r

)
of the individual

electrons are distinct. The only difference is that now such

a term appears only once, whereas before it appeared twice,

corresponding to a permutation of the electrons. The situation

is, however, more complicated if (nl)
=

('/'). The only singlet
terms

(nl; nl- L}

which actually occur are those with even L 0, 2, ,
21 and the

only triplet terms are those with odd L --=
1, 3, ,

21 1. This

rule is thoroughly in accord with the empirical data.

The best-known lines of the spectra are those arising from
transitions in which only one electron is not in the normal state

and is jumping between higher energy levels. Hence if one

of the two electrons (not saying which
!)

is in the normal state

ri = no, /' = (n
=

1, 2, 3, 4,
- - for He, Be, Mg, Ca,

-

)

we have L = / and the two quantum numbers (n, /)
suffice to

determine the singlets or triplets. The lowest S term (L = 0)

of the singlet system has the principal quantum number n = ?z
,

but there is no such term in the triplet system ;
it begins with

n n + 1. We find that the lowest S term in such a triplet

system (which is, as we know, simple), e.g. in the spectrum of

Mg, actually does lie in the neighbourhood of the second lowest

S term of the singlet system instead of the lowest.

11. The Problem of Several Bodies and the Quantiza-
tion of the Wave Equation

In this paragraph we depart from our usual terminology
and denote the number of individuals by n instead of /. We
first consider more fully the reduction of $R

W to
[9ft

n
],

for we shall

find that although it does not apply to electrons, it does to

photons. Let H = \\Ha p\\
be the Hamiltonian function of an
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individual. The variables ^(n^ w 2 , )
of the unitary space

$R
W behave like the monomials

_ K + , + =
n), (n.i)

of degree n which are formed from the components xa of an

arbitrary vector in 9ft
;
we denote this monomial (11.1), without

the denominator, by <^(n lt
n 2y ).

We shall have occasion

to use the differentiation formula

d(x? % )--= (i *i
Wl

~ l

**' ' ' '

dxj -f ( 2 A'?' *S<
-' dx 2 ) + ' '

.

In the absence of interaction between the individuals we obtain

from

i dt

the equation

1 :,

-f

In the sum on the right <f>(n l 1, 2 .

'

', /
+ 1,

' '

')
* s to

be interpreted as <f>(n ll n 2 ,

'

*)
for )3

= 1
; similarly for the

term with j3
== 2, etc. We can also write this equation

On introducing the binomial coefficients in accordance with

(11.1) we obtain as the equations of motion

lf n 2 , )_ . / . . m

These equations are of the form

1 + ^ =
0, H = H.p r,aft (11.4)
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where the matrices
rjap are defined by

~ii n\= H*. n*= n*
t

. . . ,,,~\
*i (II-3 )

otherwise v '

and for a 4= j5

/ \ l"Vna(w* +1) /i , -/\Wn
i> "*>

'

;
n

i "2,
' '

')
=

|
(
n -

)

where the first alternative holds when all n' = n with the ex-

ception of n* = n 1, n' = Hp -\- I and the second in

all other cases. H is, as it should be, an Hermitian matrix.

If H is in diagonal form the fundamental vectors forming our

co-ordinate system are the quantum states of the various in-

dividuals
; |0(n lf n 2 ,

' *

*)i
2

ls then the probability that there

are simultaneously n
v

individuals in the first quantum state,

n 2 in the second, etc. On reduction from 9R
n to [9i

n
]

it becomes

impossible to identify the individuals as Mike, Ike, and we
therefore may not ask for the probability that Mike is in the

<x
th

state, Ike is in the /1
th

,
. If we have in addition to // a

perturbation eW affecting the individuals (and symmetric with

respect to these individuals), then equation (11.3) governs the

change of the probabilities \^(n^ n 2 , -)|
2 in time.

The Hamiltonian function H reminds us of the one which we
obtained in Chapter II, 13 by quantizing Maxwell's equations ;

there the individuals were photons. Maxwell's equations are

to be considered as the quantum-theoretical wave equations of

an individual photon. If we replace the photon by an individual

whose state (#a )
varies in accordance with equation (11.2) we

are led to a new way of treating the problem of several bodies,
which we call the

" method of second quantization
"

in contrast

to the "method of composition*' or
" X multiplication

"
de-

veloped in Chapter II, 10. In this we consider (11.2) as the

classical equations of motion of a physical system whose canonical

variables are the real and imaginary parts q(KJ p^ of xa ,
and as

such subject them to the process of quantization.
19 We here

tie on to the development given in Chapter II, 11. Introduce

the complex quantities

into the Hamiltonian function H as independent variables in

place of qa , pa ;
the Hamiltonian equations are then

dx. _ H dxa _ SH . .

dt 'j>x' ~dl

~ *W (
l *>
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In order that (11.2) may be considered as the classical equations
of motion of a system with infinitely many degrees of freedom,
in accordance with our programme, they must be of the form

(11.6). But this is in fact the case
;

the Hamiltonian function

is then

H =

In quantizing xa ,
x are to be replaced by Hermitian conjugate

matrices x* y
x which satisfy the following commutation rules :

Xa Xp Xp xa =-
0, xa xp Xp xx = 0, I

. -
s fl(

=
/J)[ ("-7)v v-, v^ v ,X - J x ' '

\

The Hamiltonian function H then becomes the matrix

H = ZHafiXXfi\ (11.8)
<*>ft

if H is in diagonal form then

H

We are here dealing with an infinite set of oscillators, the in-

dividual members of which are distinguished by the index a
;

the energy of the ath
is given in terms of the complex co-ordinates

xa ,
xa by Ea xa xa .

The quantum theory of a single oscillator as developed in

II, 3 gives us as the irreducible solution of

XX XX = 1,

where x, x are two Hermitian conjugate matrices normalized
in such a way that the energy xx is in diagonal form, the matrices

x(n, n -f 1)
= Vn + 1, x(n, n 1)

= Vn
; xx(n, n)

=
n,

all other components vanishing ;
the quantum number n assumes

the values 0, 1, 2, . From this we obtain the solution of

(11.7) by composition :

n 4-1
a n = n

'i, i, ')
= except ri

ot
= n* 4 1,

otherwise
;

if all n' n

except n, = n 1,

otherwise.[0

The products x^x^ are of course in diagonal form; xA x ft
is the

matrix r^ introduced above, and (11.8) coincides with (11.4) :
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the method of second quantization leads to the same result as the

method of composition supplemented by the
"
symmetric reduction

"

0/9ft
n to

[9ft
n
].

But now the number

ni + n 2 + = n

of individuals is not prescribed ;
however H is reduced into

sub-matrices in accordance with the various values of n, for

all components H^^ ; n\n
f

t )
for which n[ + n'2 +

=(= ftj -|- n 2 + vanish. The total number of photons
is not conserved, and to this extent Maxwell's equations do not

fit completely into the quantum-theoretical picture unless we
wish to consider

"
non-existence

"
as a particular quantum

state of the photon.
The method of composition remains applicable in the presence

of interaction between the individuals, provided it is an in-

stantaneous action at a distance determined by the simultaneous

values of the canonical variables of the various individuals.

But it breaks down when, as in the theory of relativity, account
is taken of the finite velocity of propagation, which led to the

introduction of continuous fields in the classical theories. The

difficulty arises from the fact that the wave function
iff

must
contain the one time t as argument in addition to the spatial
co-ordinates of each particle, whereas the theory of relativity

requires that the proper time of each particle appear as argu-
ment in ^ as well as the spatial co-ordinates. The method of

second quantization shows its superiority in dealing with such

problems.
As we have seen, the method of second quantization in

accordance with Heisenberg's commutation rules is equivalent
to a reduction of the system space 9ft

n to
[9ft

n
j.

Since we have
seen in II, 13 that this leads to the correct laws of radiation

phenomena, we must conclude that the behaviour of photons
corresponds to this reduction. But in the case of electrons the

reduction is to the space {9ft
n
},

and we must now investigate
to what kind of quantization this corresponds.

20 The vectors

of the unitary space {9ft
71

} are the anti-symmetric tensors with

components

*{<*i, <*2,
' '

', <*n}
~

\x^ x
2 , -,

xan \ (11.9)

in the space 9ft,
where the one row in the determinant stands for

the n rows formed in the same manner from n vectors j = j
(1)

,

j<
2
), , j(") of 9ft. We can obtain the totality of linearly

independent components by restricting the indices by the

condition

a
t < a.2 < < a n . (11.10)
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We now denote (11.9) by if*(n l}
n 2 , ),

where na = 1 or

according to whether a appears in the set of indices a x ,
a 2 , ,

a n or not
;

these quantum numbers na may thus only assume
one of two values. On replacing a A

= a in (11.9) by an index

j3 + a, (11.9) vanishes if j3 is equal to one of the remaining
indices a 2 , ,

a n ;
if j8 is different from a 2 , ,

a n it becomes

*{2 ' ' ' a n }
^ 0(n lf ,

na
-

1, ,
n

ft + 1, ),

the sign 1 being ( l)
r where r is the number of indices in

the set a 2 , ,
a n lying between a and j8 :

where the sum is extended over all indices A between a and
/?.

We again obtain equations of the form (11.4) ; (H-5) is then

valid as it stands but (11.5') is to be replaced by

W"i, "2,
' ' '

J "1, H 2 ,

' - 1 or 0,

where the first alternative applies to the case in which all n
r

n

except nA
=

1, n\ = ; n^
=

0, n
ft

=
1, the sign being again

determined in accordance with the above rule. On writing
a matrix ||a(wH')|| in the form

a(0 0) a(0 1)

0(1 0) a(l 1)

and introducing the abbreviations

1

xl'x
1

00 xlx

where the matrix that is written explicitly in the first equatior
is in the ath

place and those in the second in the ath and
j8
u

places respectively. We must now attempt to write these

matrices in the form x^ x$ ;
this can in fact be accomplished by

taking

= 1' X 1' X

= \' x x .

'

(ii.n;
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the small explicit matrices being in the oc
th

place, x^ XA are

Hermitian conjugates, and H can now be written in terms of

them in the desired form (11.8). Instead of the commutation
rules (11.7) we now have

xa xfi + Xpx* = 1
x

ai xp + x
ft
xa =z0,xa xp + x

ft
xa=z&&ft

. (11.12)

(11.1) is the irreducible solution of these equations by a pair of

Hermitian conjugate matrices x^ x^ which are so normalized

that xa xa is a diagonal matrix.

In order to show that the equations (11.4) for the vector

in system-space yield the Hamiltonian equations (11.6) for the

forms

x* = 2X(" ; n') 0(n) 0(n') and xay

n,n'

we must prove that the formula

ij u ^"
xa H H x* = -

vXa

employed in II, 11, holds here as well. We find that it does

not hold for an arbitrary polynomial H in x, Jfa ,
but that it

does for even polynomials in general and so in particular for

the Hermitian form (11.8). For we have, for example,

whence

x i
' XA xp x xp

' x i
= 8la Xp, Xj^H

ft

On introducing real quantities, i.e. Hermitian forms, pa , qa

by

'

and denoting the set pj, q z ; p 2 , <7 2 ; straight through by
Pi, Pa, Ps, P<i>

* ' ' we obtain the relations

P; = l, PP/>+P,*P =
(a+ /3) (11.13)

The pa are not only Hermitian but unitary as well, as can be

seen from the first of these equations or directly. Here again we
meet the matrices

1

1

t

t

which occurred in connection with the spinning electron.
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We have thus discovered the correct way to quantize the

field equations defining electron waves and matter waves.

Here again we find, as in the case of the spinning electron, that

quantum kinematics is not to be restricted by the assumption
of Heisenberg's specialized commutation rules.

12. Quantization of the Maxwell-Dirac Field

Equations
21

The field laws arise from a Hamiltonian principle which is

analogous to the Hamiltonian principle of classical mechanics.

This latter is expressed in terms of a Lagrangian function L
which depends on the positional co-ordinates q { and their de-

rivatives q %
with respect to time, and asserts that the first

variation of

\L(q t , q<)dt (12.1)

vanishes when the q i
are assigned arbitrary infinitesimal incre-

ments 8*7, which vanish outside a certain finite time interval.

This principal yields, on integration by parts, the differential

equations

+/, = with ,.
= -

|.,..=
(,2,2)

Defining

and noting that

SL

we obtain for the differential of H the expression

Expressing H as a function of the q i and the generalized momenta

pi associated with them, we have

and by (12.2) these are just the Hamiltonian canonical equations

= __
dt

~~

3/>/ dt
~"

^q-

In quantum theory the q i} p t are operators satisfying Heisen-

berg's commutation rules.
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This reasoning can be carried over without difficulty to the

case of a continuum, as appears in field theories. On replacing
for the moment the 3-dimensional space by the 1-dimensional

interval ^ x f 1 described by the co-ordinate x and assuming,
for the sake of simplicity, that only one state function q q(x, t)

is involved, the integral (12.1) is then to be replaced by

o

Naturally L may depend on the spatial derivative
,
or even

higher derivatives, in addition to q. The continuous variable

x takes the place of the index i and the Lagrangian function, in
i

the sense of (12.1), is now the integral j L(q, q)dx with respect to

o

the spatial variable instead of L itself. We first replace the

continuum by a discrete set of equidistant points defined by

A# -
(i = 0, 1, ,

ft 1). The differential quotients with

respect to x are naturally to be replaced by difference quotients
with the difference A# = 1 'n, and the integrals become sums.

In accordance with the outline above we must now set

calculated at the point x = i/n. For the continuum we have

analogously to set

, 9)

and H is to be defined by
i

H=L+ \qpdx.
o

The commutation rules which are satisfied by q, p in quantum
mechanics cause some trouble. As long as we employ the

discrete set of points in place of the continuum they are

q(*)PW - PW q(x)

where x, x' run independently through the set i/n and &xx > is

1 or according as x' coincides with x or not. For fixed x'

Pure Mathematical Physics



THE MAXWELL-DIRAC FIELD EQUATIONS 255

js a function of x which vanishes for all values of the argument
other than x

1

and is there so large that the sum 28(x x'} A#
X

has the value 1. In dealing with the continuum we therefore

introduce with Dirac a function 8(x x
1

}
which vanishes at

all points x ^ x' and is so large at the point x' that its integral
has the value 1 (cf. I, 7). Of course there exists no such

function, but it can be
"

arbitrarily closely approximated
"
by

a function which vanishes everywhere except in a very small

interval about x' and assumes very large values within this

interval. Only in this sense can we perform the passage to

the limit A# and write the commutation rules symbolically
in the form

q(x) p(x')
-

p(x') q(x}
= i 8(x

-
x'). (12.3)

A good illustration of the mathematical interpretation of

this pathological function 8(# x'} arises in the theory of ortho-

gonal sets of functions <,(#), for with its aid the completeness
condition may be formulated

This is literally correct as long as x only runs through a discrete

set of points, but the rigorous mathematical formulation for

the case of a continuum is given by

ff
n

f
lim

j
\ $i(x ] <?(#')

*

h(x ) v(%'} dx dx' \u(x] v(x] dx
n~+

o o
' l

o

where u(x), v(x] are any two continuous functions in the interval

(0, 1). Hence from the more rigorous standpoint (12.3) must
be replaced by the equation

11 i

^u(x]{q(x] p(x'} p(x'} q(x}}v(x'} dx dx' =
i^u(x) v(x) dx

00

containing two arbitrary functions u(x), v(x] ; furthermore, it

is to be noted that the p, q in the brackets are first to be replaced

by approximations p (n
\ <?(

w
)

e.g. by the wth
partial sum of

their expansion in terms of orthogonal functions and the

passage to the limit n -> oo is to take place after',
not before,

the integration. This interpretation offers a sound mathematical

method of dealing with the relation (12.3). It is to be emphasized
that (12.3) refers to two points of space x, x' at the same moment

t, i.e. in a section of the world in which t = const.
;
the arguments

of q and p are to be written more precisely as (x, t), (x', t)
re-

spectively.
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On applying this general scheme to the action

W =- M + M' + -
F, (5.18)

oc

from which the field equations for the electron and for the electro-

magnetic field are obtained, we find ourselves faced with a

difficulty arising from the fact that the Lagrangian function

does not contain the time derivative of the scalar potential / ,

for the generalized momentum associated with / then vanishes

identically and cannot possibly satisfy a commutation relation

such as (12.3). We avoid this difficulty for the moment by
utilizing the principle of gauge invariance to remove / from the

expression of the Lagrangian function by setting it equal to
;

this device has already been employed in II, 13. The set of

independent functions describing the state is then

t = (/ ** fc, *4), f
=

(A, / A),

where we have written
i/r3 , ^4 in place of $1, (/r2 . The momenta

associated with these quantities are then found to be : i$p with

^rp and Ep with /. The commutation rules which are to be

applied in quantizing the field equations are accordingly

t

) [,,a = l,2,3,4], (12.4')

P') [p,?=l,2,3], (12.4")

where P and P' are any two points of the same spatial section

t = const. We have here taken account of the fact that the

quantities $ describing matter are not to satisfy Heisenberg's
commutation rules, but are instead to satisfy those obtained

by replacing the minus sign which occurs in them by a plus

sign. These rules must be supplemented by the assertion that

the
ifjp satisfy in addition the equations

^(P)^(P') +WW) = 0- (12.5)

and the same for $p ;
that the /P at any two points P. P' are

commutative and the same for the Ev ;
and finally that the

material quantities i/r, $ on the one hand and the electromagnetic

quantities /p ,
EP on the other are kinematically independent,

and that every quantity of the first kind at a point P commutes
with every quantity of the second kind at any point P' (in the

same section t = const, of the world).
As in II, 13, we again consider the whole system enclosed

in an insulated and perfectly reflecting cavity which is at rest.
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Jn order to describe the electro-magnetic potentials we make
use of a complete orthogonal set of solutions

f
of

Af + v*\
=

(12.6)

in the cavity, which satisfy the conditions

div
f
=

0, f
normal

at the walls. The construction of such a system is readily
obtained from the Gauss divergence theorem

f (curl f
curl g + div

f div
fl + f ^dV

=
J([f,

curl g] n -f \ n div g) do (n denoting normal component)

for the vector
[f,

curl g] + f
div g, f and g being two arbitrary

vector fields.
22 We first determine the scalar functions

<f>
< A

which satisfy the equation A< + ^ = and vanish on the

walls, and from them construct the vector fields
fA grad < A ;

these vectors fA automatically satisfy the conditions above,
are of course mutually orthogonal and can be normalized in

accordance with the equation

f (fx . \^dv = sAA.[=

We also determine a complete normal orthogonal system f,
of

solutions of (12.6) which are normal to the walls but which

satisfy the condition div fv
= everywhere, not only at the

walls. The
fA are then orthogonal to these

\ v and they con-

stitute together a complete orthogonal system for vector fields

in the cavity. We may consequently write

in the section / const. The
f A , f, are vectorial functions of

position in space and have as values ordinary numbers, whereas
the />, q are scalar quantum mechanical matrices which are

independent of position and which satisfy the commutation
rules

all q commute among themselves and all p among themselves,

and any p commutes with any q whose index is not the same.

[These rules are perhaps most readily obtained by solving

(12.7) for the
4<
Fourier coefficients

"
p, q in terms of integrals
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of scalar products of
f, ($ with fa, f, and applying the commuta-

tion rules (12.4).] The energy

of the electro-magnetic field becomes

We already know the solution of the commutation rules which

reduces this expression for the energy to diagonal form. The
individual components of the vector on which the />, q operate
are distinguished by means of the quantum numbers N v ,

corre-

sponding to the y, and the values of the continuous variables q^

corresponding to the A. On setting q v
= v/oc

"

5"> Q* ls an

operator which affects only the index N v in accordance with

the equations

all other components, corresponding to transitions N v -> AT

^

in which Ni is neither N v 1, vanish. N v assumes the integral
values 0, 1, 2, and can be considered as the number of

photons of the kind v. The momentum p^ associated with the

continuous variable q^ is, following Schrodinger, represented by

the operator
-

. The electro-magnetic energy is then in
Z d^A

diagonal form and, on neglecting the (infinite !) null-point

energy, multiplies the vector component (Nv ; q^) with

ZvN.+ lZti (12.8)
v & X

We thus see how it happens that the electro-static part, which
is described by the continuous variable q^ is separated off from
the part due to the radiation, described by the discrete Nv

giving the number of photons of kind v.

The appear in the part of the energy due to matter only
in combinations of the form $ft tyff . Consequently it will be found

advantageous in dealing with electrons to apply the method
of composition followed by anti-symmetric reduction

;
we have

shown in the preceding section that this procedure is equivalent
to quantizing in accordance with the rules (12.4'). Since the

electro-magnetic quantities commute with the P , $p they may
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here be considered as ordinary numbers. The quantized wave

equations then refer to a
"
vector

"
J with components

where P l , ,
Pn arc the positions of the n electrons and

Pi,
* *

", Pn are their spin variables, each of which runs through
the four values 1, 2, 3, 4. We write z

Pl . . Pn
as a column

consisting of 4n terms
;

this z is anti-symmetric with respect

to a permutation affecting the Pr and p r alike. @(r) =
(Si

r)
,

S r

\ 5(

3
r)

)
is the spin vector (Sj, 52 ,

S3 ) operating only on the

r
th index p r ,

jT (r } is similarly the operation on the r
th index p r

which interchanges ^ t , t/r2 with <A 3 , <// 4 ,
and grad

(r) is the gradient
with respect to P r . The part of the Hermitian energy operator

J in the equation

which depends only on matter is

\
-
grad

(r) + V*Q ' U^V) + - Z grad <f> A(P r } )

+ Wol
1 ^ (12.9)

and to this must be added the electro-magnetic part (12.8).
Since we have throughout taken the scalar potential / =

we have lost the equation

cliv + p = (12.10)

arising from the variation of / . This equation contains no
derivatives with respect to time, and consequently represents
a condition on the state of the field at a moment I = const.

;

we must naturally take it into account. On substituting the

value of & from (12.7) we obtain

27<7A A<^A + p =
A

and on multiplying with < A and integrating over the space under
consideration

From the standpoint of quantum mechanics the left-hand side

of this equation is an operator D^ and the meaning of the

equation D^ = is that only those vectors j which satisfy the
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equation D* 3
= are to be allowed. DH also consists of an

electrical part q^ and a material part

The operator D^ which is to be applied to j is accordingly

The equations Djj = then assert that all components
n

z(Pr ;
Nv ; qx) of J vanish except those for which qK Z<t>i(P r } ;

r-l
we may therefore write the non-vanishing components as

r = 1

But then

grad<'> ^ - grad^> ^ + ^ grad ^(Pr )

-

yl ^^A

is exactly the combination which appears in (12.9). Sq\ is

now given by .

A

Z Efa(Pr} UP.) - I G(PT ,
Pg )

r, * = 1 A r, * = 1

where

is the ordinary Green's function for the cavity. We conse-

quently obtain the quantum equation

for 0, in which the operator

(r)
, grad<'>) + m T" + ? G(Pr , P.)

J 2r, = l

>, fr(Pr)) . &}. (12.
r = 1

-.(5, grad) + m or

In Dirac's theory
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is the energy operator for a single free particle, a G(P, P') is

the classical potential due to the electro-static repulsion be-

tween two electrons situated at P and P' . The next term

represents the sum of the energies v of the photons in the various

frequency states v, and finally the last term represents the

interaction between photons and electrons by emission and

absorption. The meaning of each of the terms from which
the energy operator (12.11) is constructed is thus apparent.
The quantum theory had previously dealt with fields, such as

that which binds the electron in hydrogen to the nucleus, in

a manner entirely different from that with which it treated the

field of the emitted radiation
;
the first was calculated classically

and purely electro-statically as an action at a distance described

by the Coulomb potential, whereas the second was broken up
into discrete photons with the aid of Bohr's frequency condition.

We have now obtained a theoretical justification for this pro-
cedure which led to good agreement with experiment.

Our expression shares with classical electro-dynamics the

disadvantage that it contains the term G(P r ,
Pr ) representing

the infinitely large reaction of the r
th electron with itself, for

as we allow P' to approach P, G(P, P'} becomes infinite like the

reciprocal of the distance PP f

. We should therefore replace

G(P, P) by the finite T (P, P) where

rip, p
f

]
- GIF, P') =,V ' ' ^ ' ^

477 -PP"

for this amounts to dropping an infinitely large additive con-

stant from JQ. P(P y P} represents the effect on an electron at

P of the field obtained by reflecting the field of P in the walls

of the cavity. (12.11) shows explicitly how the various terms
of JQ depend on the value of the fine-structure constant a

;
on

developing the solution in powers of a we are faced again and

again with infinitely large terms of the same kind as G(PT ,
Pr ).

The operator J$ contains singularities which, at the present

stage, frustrate all attempts to carry through the theory. We
may indeed conclude with P. Jordan that the problem of the

existence of the electron is solved, but that that of its con-

stitntion has as yet eluded us. Our equations further suffer

from the fundamental disadvantage of the Dirac theory that

the individual spin variables p r assume 4 instead of 2 different

values. 23

There is, of course, nothing to prevent us from quantizing
the matter waves in a manner analogous to that applied to

electro-magnetic waves. We should then develop our quantities
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describing the material field in a series of characteristic

functions
1/1
=

ifi^l (with four components) of the Dirac equation

(@, grad) + m Tt + pfj
=

(12.12)

which constitute, on imposing appropriate boundary conditions,
a complete orthogonal system. The general component z of

the vector
,
on which the energy cj$ operates, will then depend

on the quantum number nM ,
which corresponds to the char-

acteristic values
JJL
and which may assume only the values and

1, and in addition on the numbers Nv of photons of the various

frequencies v and on the continuous variables qx . But then the

operators D^ which commute among themselves and with J ,

are not in diagonal form, and the elimination of q^ cannot be

accomplished as in the above method.

Instead of introducing a cavity as in the above we may
employ a rectangular parallclepipedon with the

"
boundary

condition
"

that all functions are to be periodic functions whose

periods are the lengths of the sides of the parallelepipedon.
We can then introduce running instead of standing waves as

characteristic functions for the electro-magnetic field
;
this gives

rise to a better agreement with the physical picture in which

a photon corresponds to a homogeneous plane wave. The

energy and the momenta are then also in diagonal form if we

neglect the interaction between matter and light. Equation

(12.10) then causes some difficulty, as its right-hand side

must be replaced by the constant mean value of the charge

throughout the entire space in order that a periodic solution

be possible. On taking account of protons in the theory this

will automatically correct itself, as the total charge will then

beO.
The dynamical law allows only those quantum jumps of the

particles in which one n^ falls from 1 to and another n^> jumps
at the same time from to 1. Consequently the total number
of particles n^ and therefore the charge, remains fixed

;
hence

that portion of the dynamical laws in which the total number
is a given finite n is separated off from the remaining portion
and intercombinations between the two do not arise. Dirac

has proposed to interpret the presence or the absence of a proton
in the state of positive energy p, as the absence or the presence,

respectively, of an electron in the corresponding negative energy
state p, ;

our laws will then include protons as well as electrons. 21

Remembering that the numbers nM = 0, 1 were at first intro-

duced merely as an arbitrary index indicating the rows of a
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matrix, there is nothing to prevent us from replacing the numbers
M_M for negative p by n~ = 1 n_M , keeping n+ = n^ for

positive /it.
The theorem of the conservation of charge is then

IX - n~ - const, (/i > 0).

But we thereby alter the content, as well as the notation, of

the theory ;
we are now interested in that part of the dynamical

equations in which only a finite number of n^ with positive /LI

are different from and only a finite number of n^ with negative

\L are different from 1 ! The quantum jump of an electron

between positive and negative energy levels, which was so un-

desirable in the Dirac theory as formulated in the previous

section, now appears as a process in which an electron and a

proton are simultaneously destroyed and as the inverse process.
The assumption of such an occurrence, for which our terrestrial

experiments offer no justification, has long been entertained in

atrophysics, as it seems otherwise extremely difficult to explain
the source of the energy emitted by stars.

However attractive this idea may seem at first, it is certainly

impossible to hold without introducing other profound modi-

fications to square our theory with the observed facts. Indeed,

according to it the mass of a proton should be the same as the

mass of an electron
; furthermore, no matter how the action

is chosen (so long as it is invariant under interchange of right
and left), this hypothesis leads to the essential equivalence of

positive and negative electricity under all circumstances even
on taking the interaction between matter and radiation rigor-

ously into account.

Having now quantized the field equations, we must return

to the question of how the constituents M, M', F of the action

behave under the substitutions (6.12), (6.13), (6.H). The first

two substitutions, which we may call (a) and (&), have exactly
the same effect as before. But the third substitution (r),

which sends the components of
/r

over into the components
of $ or their negative, now affects M and M' differently, for

t/r
and

iff
arc no longer commutative with respect to multiplica-

tion they are, in fact, almost anti-commutative. From this

it is found that M
} M', F behave under (c) in exactly the same

way as they do under (b) y
i.e. they are multiplied by the signs

, , -j- respectively. Hence past and future play essentially

different roles in the quantized field equations ; we find no sub-

stitution which leaves these equations unchanged while reversing
the direction of time. It seems to me that we have thereby
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reached an extraordinarily important goal of physics. We
can now obtain the substitution

/.->-/. (a
= 0,1, 2, 3)

on combining (a), (b) and (c) ;
this substitution neither affects

the co-ordinates nor disturbs the quantized wave equations.
In view of Dirac's theory of the proton this means that positive
and negative electricity have essentially the same properties
in the sense that the laws governing them are invariant under

a certain substitution which interchanges the quantum numbers
of the electrons with those of the protons. The dissimilarity
of the two kinds of electricity thus seems to hide a secret of

Nature which lies yet deeper than the dissimilarity of past and

future.

13. The Energy and Momentum Laws of Quantum
Physics. Relativistic Invariance

In quantizing the wave equations the spatial and temporal
variables were treated so differently that the relativistic in-

variance of the resulting laws might seem to be open to serious

doubt. But a thorough investigation due to Heisenberg and
Pauli reassures us on this point.

25 We carry through these

considerations on our action principle but in such a way that

the general validity of the argument may be readily seen. At
the same time this offers an opportunity to discuss the meaning
of the quantization more thoroughly than we have done hitherto.

/. The Energy and Momentum Laws of Quantum Physics.

\Ve begin with the 4 -f- 3 + 3 operators i/rp , /, E p which
are functions in 3-dimensional space satisfying the commutation
rules (12.4) and the supplementary rules there set forth. There
exists one, and in the sense of equivalence only one, irreducible

solution of these conditions. From it we obtain the energy

density defined by (6.5), (6.6) and integrate it over all of

space :

(13.1)

We next construct the
" commutator
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of an arbitrary operator with J . Consider the result of this

for the particular operators =
i/rp , /p ,

E v ;
it should be possible

to evaluate these commutators using (12.4) and the supplement-

ary rules alone
;.

if one of the quantities involved appears as a

derivative with respect to a spatial co-ordinate it should be

transformed by integrating (13.1) by parts or by deducing
commutation rules for it from (12.4) in terms of appropriately

defined derivates of the S function. If is that process

involving only differentiations with respect to the spatial vari-

ables, but which coincide with the derivative with respect to

time in virtue of the Maxwell-Dirac field equations, we find

,
O / p

- ~ ~ " - - *

OC Lf .

^ v*
^| 'Y

8F01 '

We now drop the normalization fQ = 0. It follows from these

equations that 80 for any gauge invariant operator coincides

with its time derivative as defined in terms of its spatial deriv-

atives by means of the field laws. We may therefore replace
the Maxwell-Dirac field equations by the quantum mechanical

dynamical law

5 represents the probability state of the physical system (pure
state

!)
at the time x

;
it is a vector of that vector-space in which

our operations take place. The fundamental concepts here

involved are contained in the general programme of quantum
mechanics as set forth in II, 7. The "

density of electricity
at the point P "

is, for example, represented by the operator

P $1*1*1 H h + which is independent of time. The changes
in the probability distribution for this physical quantity in

course of time are due to the changes in the state 3 and not to

changes in p itself
;
the rule for the calculation of this probability

distribution from p and 3 is given in the general programme
referred to above. The same remarks apply to any gauge
invariant quantity 0. However, it is more desirable to con-

sider the
4t

density of electricity
"

(without specifying either

time or position) as a fixed physical quantity represented by a

definite operator p, and to ascribe the variations in its prob-

ability distribution in time and space to changes in the prob-

ability state 3 considered as a function of the spatial co-ordinates
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%ij x2 , #3 *w addition to the time XQ . We should then expect to

find four equations

i|r
= 7i5 (a

=
0, 1,2, 3) (13.4)

in place of the one (13.3) in which the operators

are those representing energy and momentum. Only now that

we have formulated the general scheme of quantum physics
in a manner which is symmetric with respect to the spatial
and temporal co-ordinates, as required by the theory of relativity,
can we consider it as complete. In order to determine the

mean value of a quantity such as the electric density p we must

assign to the spatial co-ordinates x lt
x2 ,

# 3 ,
on which the operator

p depends, any definite values # (e.g. 0). The spatial com-

ponents of equation (13.4) tell us that the replacement of
(xfy

by a neighbouring point (x + dx
p)

amounts to the same thing
as subjecting the normal co-ordinate system in system space,
to which the vectors 5 are referred, to the infinitesimal rotation

We must not forget that the equation (13.3) is not equivalent
to the complete set of field equations, for we have omitted the

one

a(P) = div @ + p =

which does not involve differentiation with respect to time. We
must therefore restrict ourselves to vectors 3 which satisfy all

the equations

cr(P)8
- 0. (13.5)

These equations define a linear sub-space 9fta of the original

system-space 5R. The operators o-(P), a(P') associated with any
two points P, P' of space are commutative :

a(P) a(P')
-

o(P'} a(P) = 0.

It is of prime importance that a(P) commute with JQy i.e. that

that this is the case follows from the fact that the equation

- = is a consequence of the remaining field equations in
o#

the classical field theory, and consequently independently of
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our field equations we may conclude that the gauge invariant

operator a satisfies the equation Scr = 0. This commutativity
of cr(P) and ^ guarantees that the infinitesimal rotation iJ^dxQ

of system-space during the time interval dxQ does not carry the

vector 5 lying in the sub-space 9^ out of 9fta .

Continuing our programme, we now set

and investigate the
"
commutator "

of an operator with J l ;
we shall denote this commutator by

8
l whenever confusion might arise between it and the commutator

8 ~ with 7 . We find the equations
*

(13.6)

From this it follows that for any gauge invariant quantity
^0

we have 80 = on taking the equation a into account.
v%i

Hence the way in which gauge invariant quantities depend on

the spatial co-ordinates can in fact be described as we predicted :

the operators representing them are constant, but the vector

3 representing the probability state varies in space in accordance

with the equations (13.4) for a = 1, 2, 3.

That the four equations (13.4) are consistent also follows

from these considerations. In the first place we have

Sja - or a(P)y i
- y i a(P) -

in the entire space 9t
;

this follows from (13.6). In the classical

field theory the differential conservation theorem

a/? /a/} a/? Mj\
_

[ j
i I L I 1 \ Q

*XH
^

\^x l

^
*x2

^
ZxJ

is a consequence of the field equations. Since t is a gauge

invariant, it follows that after the quantization the operators

satisfy the relation

V;

* In contrast with (6.2) we now employ the letter , without the factor

i /a, as an abbreviation for curl f .
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in the space 3L defined by (13.5). Integrating over the space
# = const, we obtain

F - o or yQ y,
- yt y = o. (is.7)

[The equation which takes the place of (13.7) for the entire

space 9t is

Furthermore

= S/33
OX2

in 3}^, and on integrating this over space we find

= or ??3
- Jt = 0.

We thus see that the operators Ja are commutative in 9^, and

consequently equations (13.4) possess one and only one solution

j when the initial value of 5 (i.e. at the origin of the space-time
co-ordinate system) is a given vector in 3^,.

//. Relativistic Invariance.

On transforming from the normal co-ordinate system XM in

space-time to another x'M by means of a Lorentz transformation

3

A: x'a
= ZO^XP

ft-.O

the solution of the equations

-.^
= 78 (13.4')

**xa

is, as we shall show, obtained from the solution of (13.4) by
means of a unitary transformation U induced in system-space

by A. That is, there exists a unitary transformation U such

that

is satisfied in virtue of (13.4) :

or

p'U. (13.8)
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We could also say that (13.4') have the same solution 5 as (13.4)

but that the normal co-ordinate system employed in system-

space has undergone the unitary rotation [/, for the vector f/J

has the same components with respect to the new co-ordinate

system as 5 had with respect to the old. We are only able to

give the transformation U explicitly for infinitesimal A :

IM = i + i|&/il ;
U = I + -.&M.

The equations (13.8) which are to be verified are then

ft

In particular, the operators in system-space which correspond
to infinitesimal rotations in physical space are, as we have

long known, those representing moment of momentum
;

that

SM corresponding to the infinitesimal rotation Dx
'

Sx =
0, 8*! = 0, 8#2 #3 ,

8#3
= #2 (13.9)

about the X-axis is the ^-component of moment of momentum :

=
f ( (13.10)

The infinitesimal Lorentz transformations which actually repre-
sent a re-partitioning of the world into a new space and a new
time are dealt with in exactly the same manner

;
it will suffice

to consider as typical of such transformations

8#o = #1, 8#! = x
,

8* 2
=

0, 8*3 = 0.

The 8M associated with this transformation is

the second term, which vanishes for # =
0, can be omitted,

for we have already shown that y i commutes with all y#. This

term does not fit into the present scheme, in which all the

operators are functions of x^ x2 ,
x3 alone. Our problem is thus

reduced to showing that in 9^

(Mn,J.] = 0, 0, ? -?4 fora _ i o 3 (13.11)

(M10 , ya ]
= - ? - ? , 0, /

t0r a -
'
A

'
Z

>
6 -

(13.12)

Furthermore, the invariance of equations (13.5) which define

the sub-space St^, will be proved by showing that the equations

[M18,a]=0 f [M 10,a]=0 (13.13)

hold in the entire space 91.
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In order to prove (13.11) we make use of the identities

Mxt $-xs dy = Q ra = x 2| 31.

J "bxa

Introducing the Kronecker 8,-t ,
the integrand may be written

In consequence of a and since I /, ^ are gauge invariants

the operations

- may be replaced by 8a / = [Jat J],
o#a

whence

(8.2 J3
- 8a3 7.) + 8J(*t

- *3 'i)^!
7 =

or

S*M23
= [^, JV/ 23]

= 8.3 Jz
- 8, 2^ [a - 1, 2, 3J.

In the classical field theor the conservation law

= ^
is a consequence of the field equations, whence on quantizing

8o(*4 - ^a +i^^^^ -
= i ^^a

holds identically in 3^. Integrating over the whole of physical

space we obtain

80^23 - [7o, Mn ]
=

;

equations (13.11), i.e.

[M^J\ = ^J*-^J* [a
=

0, 1, 2, 3],

are thus completely verified.

The relations (13.12) are obtained in an analogous manner
from

r = [for a =1,2, 3]

and from the equation
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jvhich parallels the conservation theorem

I-1-5
: dF =

of the classical field theory.
We should expect the operator functions expressed by the

t/fp , fp, E p , depending on the spatial co-ordinates, to be in-

variant if we associate with an infinitesimal rotation of the

spatial co-ordinate system an appropriate linear transformation

of the components i/rp among themselves and of the vector

components /, E p ,
and at the same time subject the normal

co-ordinate system in system space 9^ to the corresponding

unitary transformation. In formulae : We expect the process

to yield the equations

=
S'i/r

- -3'

where we have written

But we find by direct calculation that

$f = Xi H -\- x H &f = x H 8f x H71 2 2 I 3 3> 72 2 1? 73 3 1)

We first observe that these equations yield

8(7 = [Mjj, Or]
-

independently of the condition a 0. On introducing the

condition a = we find from these equations that gauge in-

variant quantities exhibit the expected behaviour. The
second of the equations (13.13) can be obtained by an analogous

computation.
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D. QUANTUM KINEMATICS

14. Quantum Kinematics as an Abelian Group of

Rotations

If we consider the operators ip, iq as infinitesimal unitary
rotations of the ray field in system space, then Heisenberg's
commutation rules [II, (11.4)] assert that these rotations are

commutative
; consequently they generate a 2/-parameter

Abelian group, where / is the number of degrees of freedom.

Let us therefore investigate the properties of Abelian groups
of unitary rotations in the ray field of n-dimensional space !

On introducing a gauge as in III, 16, to each such
"
rotation

"

there corresponds a transformation of vector space with matrix

A and between any two matrices A, B there exists an equation
of the form

AB = zBA. (14.1)

This equation is possible only if 6 is an nih root of unity, for on

evaluating the determinant of both sides we obtain en = 1.

From (14.1) we obtain by mathematical induction

for k, I 1, 2, 3, . On combining these two equations by
applying the second to Ak and B instead of A and B we find

the general rule

A kB l - e klB lA k
. (14.3)

Taking k = n in (14.2) we are led to the equation A HB = BA n
;

if the Abelian rotation group is irreducible Schur's fundamental
lemma allows us to conclude that since A n commutes with all

elements B of the group it must be a multiple of the unit matrix :

A n
1. The order of any element of an irreducible Abelian

rotation group in n dimensions is consequently a factor of n.

An /-parameter continuous rotation group is generated by
an /-dimensional linear family g of infinitesimal unitary corre-

spondences

j C l + cr2 C2 + + af Cf (14.4)

in terms of a basis formed by any / independent elements

Ci, C2 , *,
Cf of the family. The numerical parameters

(T!, (72 , , a/ may assume all real values. Setting a, = a
t
dr
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and reiterating the infinitesimal transformation (14.4), we find

that at
"
time

"
r the resulting transformation is

where we have replaced a,r by a,. [7 runs through the entire

group, which is now expressed in terms of the parameters a.

If the group of unitary transformations of the vector space is

Abelian the Cv must satisfy the conditions

C^C - CVC - 0. (14.6)

From this it then follows that all the elements (14.5) of the

group are mutually commutative, for if AB BA we have,
as in the domain of ordinary numbers,

The parameters a in (14.5) are added on composition :

U(a lt
'

, orf)U(cr't , , oy)
= U(a l + cr[ 9 , a/ + oy).

If, however, only the rotations of the ray space are commutat-

ive, we find in place of (14.6) conditions of the form

L'
pi
L- y O y C' 1 l ^ |/

A
,

where the c^ v constitute an anti-symmetric system of real numbers.
The commutator of the infinitesimal transformations with

matrices

A = a
lC l + ' * ' + afCft

B = r lC l + ' ' ' +
is

AB BA = iZc^T,- 1.

M v

We shall refer to the anti-symmetric form

as the commutator form ; it is invariant under change of basis.

A B
On writing 1 -\

--
,
1 -|
-- in (14.3) in place of A, B and allowing

k / = m -> oo, we find that the commutator of any two

elements U(al9 a2 , , or/)
= U(a) and U(r) of the group is

U(a)U(r)U-
l
(a)U-

l
(r)
=

e[h(a, r)} 1. (14.7)

If the rotation group is irreducible a fixed U(a) can only
commute with all U(r) if it is a multiple of the unit matrix,
i.e. if all its parameters a vanish. From this we conclude that

the commutator form is non-degenerate, i.e. that it cannot
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vanish identically in r
t
for a fixed set of values a

t ,
unless all

o-
t
. = this amounts to the same as the condition cik

\

4= 0.

Such a form exists only if the number / of variables is even, in

which case it can, by appropriate choice of the basis (i.e. by
transforming the variables a, and r

t
-

cogrediently under an

appropriate transformation), be reduced to the canonical form

in which the matrix \\cik \\
is decomposed into 2-rowed sub-matrices

1

-1

arranged along the principal diagonal.* It is then desirable to

write 2/ in place of / and to denote the
"
canonical basis

"
so

obtained by
iP9,iQ9 (v=l, 2,

- -

-,/)

and the corresponding parameters by crv ,
rv . The factor i has

been introduced in order to express the results in terms of

Hermitian operators PVJ Qv . The basic elements then satisfy

the commutation rules

for [i 4=

PS, - P,PM
-

o, a.0,
- &0M - o

for all n, v. The elements

U(a) = e^Pt + a2P2 + + a,Pf ) {e(x}
=

e>*\

then constitute an /-parameter Abelian group of unitary (vector)

correspondences, as do also the

V(r) - C(T&I + r2Q 2 + + T,0,).

But the commutator of elements U(a), V(r) belonging to these

two sets, respectively, is

U(<,)V(T)U-i(a)V-*(r) = e(airi + ' ' + o,rf) 1.

We have now carried our development to a point where we
can profitably return to the considerations of II, 11. In

the case of a system with one degree of freedom in classical

mechanics any physical quantity associated with the system
is expressed mathematically as a function /(/>, q) of the canonical

variables p, q. In making the transition to quantum mechanics
we had previously restricted ourselves to polynomials in />, q.

But the Fourier representation

-fOO

f
(P, 1}

=
\ \e(P + ?) f(a, T) da dr (14.8)
-00

* See Appendix 3.
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of a function / is applicable to a much larger class of functions
;

this integral need not be interpreted literally, the essential

point being that it represents a linear combination of the simple
functions e(ap + rq). On considering ip y iq as infinitesimal

unitary correspondences in ray space which are commutative
in accordance with the relation

i(pq
-

qp)
-

1, (14.9)

e(ap + rq} runs through the group generated by them. If we
now consider

(<j, r) as the components of an element in the

resulting group algebra, then (14.8) is its group matrix in the

representation obtained by associating with (a, r) the unitary
transformation e(ap + rq). This group matrix is Hermit ian if

the element is real, i.e. if

!(a, T)
- f(- cr,

-
r).

A quantity / is consequently carried over from classical to

quantum mechanics in accordance with the rule : replace p and
q in the Fourier development (14.8) off by the Hermitian operators

representing them in quantum mechanics. In particular, the
derivatives of f are represented by

+ 00

e(ap + rq) or(o-, T) dadr,
QO

+ 00

On letting U(r) in (14.7) again in infinitesimal we find, with
the aid of the commutation rules (14.9), that

p -

e(op + rq} e(ap + rq) />
= T e(ap ^- rq),

q e(op -\- rq) e(ap + rq) <y
^ a ^(orp f 1-4).

We therefore have in general

as required in order that the Hamiltonian equations

dt
~~

"'
dt

~~ ~
q

be equivalent to the quantum-theoretical equations of motion
for the vectors of system space

We have thus found a very natural interpretation of quantum
kinematics as described by the commutation rules. The kine-
matical structure of a physical system is expressed by an irreducible
Abelian group of unitary ray rotations in system space. The real
elements of the algebra of this group are the physical quantities of
the system ; the representation of the abstract group by rotations

of system space associates with each such quantity a definite
Hermitian form which

"
represents

"
//. If the group is con-

tinuous this procedure automatically leads to Heisenbergs
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formulation

;
in particular, we have seen how the pairs of

canonical variables then result from the requirement of irre-

ducibility, whence the number of parameters in such an irre-

ducible Abelian group must be even. 26

If one of the canonical co-ordinates, say q, is a cyclical
co-ordinate with period 27r, then all quantities of the physical

system are represented by periodic functions with period 2-rr.

Consequently the only values assumed by the parameter r

associated with q in (14.8) are multiples of 2-jr and the integral
is to be replaced by a sum. In such a case we are no longer

dealing with a continuous group, but with a mixed (continuous-

discrete) group.
Our general principle allows for the possibility that the

Abelian rotation group is entirely discontinuous, or that it

may even be a finite group. Thus we have discussed in III,

16, a group of order 4 and an irreducible ray representation
$8 of it in 2 dimensions. That such groups actually occur in

Nature is shown by the fact that the group we have just men-
tioned characterizes the kinematics of the electron spin dis-

cussed in 4. It can be readily shown that S3 is the only
irreducible representation of this group, and that it is in fact

the only irreducible 2-dimensional group of unitary rotations in

ray space. These results emphasize the remarkable nature of

this simplest case. The quantization of the problem of several

electrons discussed in 11 also falls within our general scheme.

In dealing with it we are interested in that Abelian group whose
basic elements pA (a

=
1, 2.

, 2/) are all of order 2
;

such

a group consists of the totality of the 4-f different elements

P*
lPt ' '

P% K - 1 or 0).

The gauge can be so chosen that the corresponding unitary
matrices pM in the irreducible ray representation in 2J dimensions

satisfy the equations

Pi = 1, PeP = - PPp (a * j8). (14.10)

The kinematics of the spinning electron is described by the

simplest case / = 1 of this representation.
Because of these results I feel certain that the general scheme

of quantum kinematics formulated above is correct. But the

field of discrete groups offers many possibilities which we have
not as yet been able to realize in Nature

; perhaps these holes

will be filled by applications to nuclear physics. However, it

seems more probable that the scheme of quantum kinematics

will share the fate of the general scheme of quantum mechanics :

to be submerged in the concrete physical laws of the only existing

physical structure, the actual world.
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15. Derivation of the Wave Equation from the
Commutation Rules

We now show by actual construction that there exists but

one irreducible ray representation (excluding the identity) of

a 2-parameter continuous Abelian group : namely, that one
which leads to the wave equation.

We obtain our 2-parameter continuous group as the limiting
case of a finite group with 2 basic elements

;
our proof is rigorous

only insofar as the validity of this limiting process is admitted.

Let A, B be two commutative rotations of an n-dimensional

ifnitary space. On introducing the gauge we have an equation
between their matrices :

AB = eBA, (14.1)

in which, as we know already, e is an nth root of unity. The

system consisting of the two matrices A
}
B shall be irreducible.

Let their commutator, the number e, be a primitive mth root of

unity, i.e. em is the lowest power of e which is equal to 1
;
m is

then a factor of n. The orders of the rotations A, B are also

factors of n: A n
1, Bn

1, so the gauge may be chosen in

such a way that A n
1, Bn = 1. Let B be reduced to diagonal

form by an appropriate choice of our normal co-ordinate system ;

the elements b i in the main diagonal are then all nth roots of

unity. Equation (14.1) then yields the following conditions on
the elements of A ||a tA.||

:

^ *<* = *** (
15J

)

i

We divide the indices i and the corresponding variables #,

into classes in accordance with the rule that i and k belong to

the same class if the quotient bi/b k is an mth root of unity, i.e.

a power of e. That this process really results in such a division

into classes is shown by the fact that if b
t lb k and b k/bi are powers

of e, then b^/bi is also. By (15.1) a lk
= if i and k belong to

different classes
;

hence the matrix A is reduced in accordance

with the division of the indices into classes. But in view of

the assumption that the system A, B was irreducible there can

therefore exist but one such class.

Having established this result, we now proceed to a finer

division into classes : i and k shall now be considered as belonging
to the same class if fr

t
= b k . We arbitrarily choose as the first

of these classes that one for which fr
t
= b and let the second

consist of those for which &
t
=

efe, the third with b
l

62
fr, ,

the mth with fr t
= em

~ lb
;

this exhausts the set, for the (m -}- l)
8t
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class bi = Bmb coincides with the first. Let the variables be

arranged and numbered in this order. It then follows from equa-
tion (15.1) that all sub-matrices

(f, k) of the matrix A are empty,
i.e. a ik

=
0, unless their row index i and their column index

k belong to successive classes. The matrix A then has the

form indicated in Fig. 3, in which all elements in the non-

shaded portions are zero (and we have taken m = 4). The
shaded portions are occupied by the sub-matrices A (l

\ A (

*\

,
A^m\ Since A is unitary the sum of the squares of the

absolute values of the elements of a row or column is 1
;

the

FIG. 3.

same must therefore also hold for the rows and columns of

each of the sub-matrices. The sum of the absolute values of

the squares of all elements in AW must then be equal, on the

one hand, to the number of rows and, on the other, to the number
of columns

;
the rectangle AM is consequently a square, and

the number of indices in the second class is equal to the number
in the first class, say d. By the same argument we see that

the number of individuals in each of the m classes is d, and hence

n = md. The figure is to be corrected accordingly ;
each of

the shaded matrices is now unitary. On subjecting the variables
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.of the first class to the unitary transformation with matrix

AM* the sub-matrix AM is reduced to the ^-dimensional unit

matrix. This normal form is undisturbed by a unitary trans-

formation affecting the variables of the first set and the variables

of the second set alike
;

we can therefore reduce the second

sub-matrix to a multiple of the ^-dimensional unit matrix, and
so on through the (m l)

8t
. The normal form so obtained is

unchanged on subjecting the variables of each class to the same
^-dimensional unitary transformation

;
we may therefore choose

as this last transformation one which reduces AW to diagonal
form. But the matrix A is then decomposed into ^-sub-matrices,
as can be seen by renumbering the variables, taking first the

first members in each set, then the second, etc. The irreduci-

bility assumption then tells us that there can be but one member
in each set : d 1, n m. Our matrices are now in the normal
form :

A - B =

pi ^ r

all elements not explicitly indicated are zero. The exponents
in B are n successive integers and 6 is a primitive nth root of

unity. Finally, the equation A n = \ yields a = 1. We number
the variables from r on and take indices which are congruent
mod. n as equal ;

the two correspondences are then

A : x x k B x =

On reiteration we find

B (15.2)

The transition to continuous groups is now accomplished by
passing to the limit n -> oo. Let the basis iP, iQ of the con-

tinuous 2-paramctcr Abelian rotation group be normalized in

accordance with (14.9). We identify the matrix A of the above

considerations with the infinitesimal e(P) and B with e(rjQ)

where and
77

are real infinitesimal constants. Then e(aP) =
A\ e(rQ]

= B* when in the limit sg ->
<r, trj

-> r. is now
and e*' ~ e(kr). e(rQ) represents the physical quantity
the values which it may assume are given by e'

T*k
,

where

r is real and k runs through all integral values. In other words,

the quantity q may assume the values k
; q may assume all

real numbers from oo to -f oo. (Of course k is to be con-

sidered mod. ft and k mod.nf, but ?? is a multiple of
"277/17

e T(i
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and may consequently be infinite in the limit.) We therefore

write q in place of k, where q is understood to be a variable

which runs through the possible values of the physical quantity q,

and V </'(#)
in place of xk . \f/(q)

is an arbitrary function,

whose values are complex numbers, which satisfies the normalizing
condition

On passing to the limit in the second equation of (15.2) we
find that the quantity eir<i is represented by the linear operator

Similarly we find from the first equation of (15.2) that

--> $(q + a)

is the operator representing eio*. On returning from finite to

infinitesimal unitary transformations we find

q:*Kq) = q'+(q), P tyfo)
=
\& (15.3)

We have thus finally justified the assumption from which we
started in Chapter II.

The extension of these results to systems with several degrees
of freedom causes no trouble. The kinematics of a system which

is expressed by a continuous Abelian group of rotations is conse-

quently determined uniquely by the number f of degrees of freedom.
The postulate of irreducibility allows us to conclude that the

particular operators (15.3) of the Schrodinger theory are a

necessary consequence of Heisenberg's commutation rules. 27

P. Jordan and E. Wigner
2* have given a very elegant group-

theoretic proof that there exists but one irreducible matrix
solution of equations (14.10), i.e. that one of degree 2^ there

mentioned and given in greater detail at the end of 11.
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CHAPTER V

THE SYMMETRIC PERMUTATION GROUP AND THE
ALGEBRA OF SYMMETRIC TRANSFORMATIONS

A. GENERAL THEORY

1. The Group Induced in Tensor Space and the

Algebra of Symmetric Transformations

rj ^HE principal problem we propose to solve in this chapter
I is ike group- tlieoretic classification of line spectra of an atom

consisting of an arbitrary number, say f, of electrons,

taking into account the reduction of the space 31 f to |3K}, as re-

quired by the Pauli exclusion principle, and the spinning electron.

For this it is necessary to consider in detail the representations
of the symmetric group, i.e. the group 777 of all /! permutations of

/ things. These are most intimately related to the representa-
tions of the group U of all unitary transformations or the group
C of all homogeneous linear transformations of a space 9t n .

This connection has already been touched upon in Chapter III,

5 : the substratum of a representation of C or U consists of the

linear manifold of all tensors of order / in 5K n which satisfy
certain symmetry conditions, and the symmetry properties of

a tensor are expressed by linear relations between it and the

tensors obtained from it by the/! permutations.
A tensor F of order/in the n-dimensional vector space 3t JR n

is defined by its nf components or, as we prefer to say,
lt

co-

efficients
"

F(i li2 if) ;
each of the indices i runs from 1 to n.

Tensors can be added and multiplied by arbitrary numbers
;

hence the totality of such tensors F constitute a linear
"
vector

space
" W of nf dimensions. Further, F can be subjected to

an arbitrary permutation s of its / indices, which can be thought
of as a permutation of the / numbers 1, 2, , / attached to

the indices i in the general component above
;

if s is the per-
mutation

i-*r, 2-* 2', -,/->/'
281
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then the tensor sF obtained by applying s to F is, by definition,
that tensor whose coefficients are

sF(i 1i 2 if)
= F(iVtV

' ' t. (1.1)

It follows from this definition that for any two permutations
6' and /

t(sF) = (ts)F.

A linear correspondence F -> F' :

F'(ii
'

if)
= 2Xh ' ' '

i,\ k, kjFfa *,) (1.2)
(*)

is said to be symmetric if the coefficient

is unaltered on subjecting the sub-indices 1, 2, , /of both the

indices i and & to the same arbitrary permutation s. The pro-
cesses of addition, multiplication by a number and permutation,
in the sense defined above, applied to tensors are invariant

under symmetric linear transformations
;

and conversely, any
transformation of tensor space under which these processes
are invariant is linear and symmetric. The totality of symmetric
correspondences constitutes an algebra Z : if A and B are ele-

ments of H then A + 5, AB and cA (c an arbitrary number)
are also. - The problem with which we shall concern ourselves

is the reduction of 3t/ into linear sub-spaces ty which are in-

variant with respect to Z1

,
i.e. with respect to all symmetric linear

transformations. Wherever in the following we employ the

terms invariant, irreducible, etc., in referring to the tensor space

9R/, they are to be interpreted with respect to the algebra Z
1

.

We give a brief resume of our terminology. We are dealing
with a vector space JR and a system Z of linear correspondences

~*
j'
- A I

of 3t on itself
;
we may often prefer to use the term

"
linear

projection
"

instead of
"
linear correspondence (operator)

"
in

order to bring out the fact that the correspondence need not

be one-to-one. A (linear) sub-space ty of 91 is invariant if an

arbitrary projection A of the system E sends every vector

J of ty over into a vector of ^5 ; ^ is irreducible if it contains

no invariant sub-space other than itself and the space con-

sisting only of the vector 0. We shall always understand by
a complete reduction ^ =--= ^ + ^? 2 of the invariant sub-space

ty a complete reduction into two linearly independent invariant

sub-spaces
s^ 1 , ^ 2 ,

even when this is not explicitly stated. A
linear projection j -+

'

of the invariant sub-space ty on the
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invariant sub-space *$' is similar if two vectors and
t)

of ty

which are related by a correspondence A of the system : t)
= A J,

are always projected into two vectors
'

and
t)' of *$' which are

related by the same A :
t)'
= A j'. ^ and ^' are similar or

equivalent: *$'
~

^J if a one-to-one linear and similar corre-

spondence can be set up between ty and *$'. In particular,
these concepts are to be applied to the case in which the vector

space is the tensor space ffl = 9ft{
of 11? dimensions and is

the totality of symmetric transformations.

In quantum theory the state of a system consisting of /
equivalent individuals (electrons) with a system-space 31 is

described by a tensor of order / in 9ft. The energy necessarily

depends on each of the / individuals in exactly the same way ;

hence the Hermitian operator which represents the energy is

necessarily symmetric in our sense. The fundamental dynamical
law therefore allows us to conclude that an invariant sub-space

*P of 9ft/ has the property that if the tensor describing the state

of the system is at any time in ^ no influence whatever can drive

it out. A complete reduction of 9ft/ into invariant sub-spaces

ty implies a corresponding reduction of the operator representing
the energy ;

hence the term spectrum is reduced into classes

of terms belonging to the various *$, such that the members of

one class can under no conditions combine with the members
of another. Naturally this division into non-combining classes

is to be carried as far as possible. But this problem is exactly
the one proposed above the only difference being that we are

here only concerned with the totality Z(h} of symmetric Hermitian

operators. However, this restriction is quite irrelevant, for

any symmetric operator can be written in the form A A
l + iA 2

where

2
'

2z

are both Hermitian.

On going over to a new co-ordinate system in the fundamental
vector space 9ft by means of a non-singular transformation

*;
=

(**)** (i.3)

the coefficients of a tensor F are transformed in accordance with

(?)

(1-4)

The transformation (1.3) in vector space induces the symmetric
transformation (1,4) in tensor space. These induced trans-
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formations, which we shall call
"
special symmetric transforma-

tions," constitute a group 27 which is isomorphic with the com-

plete linear group C = Cn ;
this representation of c was previously

denoted by (c)A The group Z* is contained in the algebra 27.

Hence a sub-space ty of ffl which is invariant under the algebra
Z is a fortiori invariant under the group HQ . That the converse

of this result is also valid is not so self-evident. Nevertheless

for all questions involving only linearity 27 can be replaced by
the more extended 27, for 2 is what we might call an enveloping

algebra for the group 27
; by this we mean that any symmetric

transformations can be expressed as a linear combination of

appropriately chosen special symmetric transformations. 1 To
show this we prove the theorem :

A homogeneous linear relation

c(ii if ; fej kf) x(i l i/ ; fei kf)
=

(1.5)
;*)

is satisfied identically by all symmetric transformations

\\*(h ''/; *i
' ' '

*/)!!,

if it is satisfied by all special symmetric transformations, i.e. if

the equation

Zc(iv *,; k fe,)*(*i*i) x(ifkf)
=

(1.6)
;*)

is satisfied for all values of the n2 variables x(ik) for which
the determinant (#(*&) |

4= 0.

Proof. Denoting the pair (ik) of indices by j and calling the

n2 = m values of j simply 1, 2, , m, the left-hand side of

(1.6) is a homogeneous polynomial of order / in the m variables

x(ik)
=

Xj :

f!

whereA + /2 + ' ' ' +/m ==/and -

'

2l , _ y

Jl'J2' J m 1

times that coefficient c(j^j2 y/) whose indices, contain j 1

/! times, j
= 2/2 times, etc. On denoting that variable x(]\]<i J/)

in which the indices j
=

1, 2, ,
m occur/!, /2 , /m times by

y(/i> /2>
* '

*> /m) the left-hand side of equation (1.5) becomes

The determinant of the ^(ife) is a certain polynomial D(xlx9 A;m)

in the variables x
f

. Our "assertion is thus reduced to the well-

known theorem of algebra : let
<f>(x), D(x) be two polynomials

in the variables x l x2 xm ,
the second of which does not vanish
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algebraically, i.e. its coefficients do not all vanish. If
<j>(x) is

zero for all values of the variables for which the value of

D(x) + 0, then
<f>(x) vanishes algebraically.

This theorem is proved for a single variable % as follows.

If
<f>(x)

does not vanish algebraically it has a definite degree

p S>
;

let q be the degree of D(x). There are then at most

p + q values of the variable % for which
<f>(x) or D(x) vanish

;

for any one of the remaining infinitude of possible values of

x neither <f>(x)
nor D(x) can vanish, contrary to assumption.

The theorem is readily extended to polynomials in any number
of variables by mathematical induction. The principal point
is that the analytical vanishing of a polynomial for all values of

the independent variables implies that it vanishes algebraically.
In quantum theory the vector space 9R is unitary : the transi-

tion from one normal co-ordinate system to another such is

accomplished by an arbitrary unitary transformation (1.3).

The transformations thus induced constitute a sub-group J^
M)

of Z which is isomorphic to the unitary group u n ,
i.e. the

representation (u)f of the unitary group. I assert that a sub-

space *J$
of 9V which is invariant and irreducible with respect

to E remains irreducible not only under the group 27
,
but under

the more restricted group 2^
M) as well. To prove this we must

show that the identity (1.5) holds even when we assume only
that (1.6) is true for those values of the variables x(ik] with

unitary matrix.

One of the most natural proofs of the above theorem con-

cerning the formal vanishing of a form
<f>

of order / depends on

the process of
"
polarization

"
: we assign arbitrary infinitesimal

increments dx
}
to the values of the variables x

t ;
the identical

vanishing of
<f>

then allows us to conclude that the differential

j OXj

vanishes for arbitrary values of Xj and dxj. This procedure
also leads us to the desired conclusion in the case under con-

sideration. Denoting by the matrix obtained by transposing

rows and columns in we have

tr (QdX) -

where X, X -f- dX are two arbitrary neighbouring unitary
matrices. In order that this be the case we must have

dX - iX 8X
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where 8X is an arbitrary Hermitian matrix : the
"
rotation

"

X -\- dX is obtained by following up the rotation X with the

infinitesimal rotation 1 + *
* 8X. But the equation

tr (0X SX) -

implies the vanishing of 0X. This is seen immediately from

the fact that a linear form

in the variables y ik
=

Sx(ik) vanishes identically if it vanishes

for all values satisfying the condition yki ylk ; indeed, any
matrix Y = \\y t k\\

can be written in the form Y l + iY2 where Y
l

and V 2 are Hermitian. On multiplying the right-hand side

of 0X = by X' 1 we find = 0: all derivativesJ

vanish in the same sense as
</> itself, i.e. for arbitrary x(ik) whose

matrix is unitary. But these derivatives are forms of order

/ 1
;

the truth of our assertion above is thus proved by
mathematical induction.

Every invariant sub-space ^5 of W is the representation

space of representations of the groups c and U which are con-

tained in (c)f and (u)-f respectively. Hence the above results

prove that if
*f$

is irreducible these representations are also.

2. Symmetry Classes of Tensors

One of the most natural methods of obtaining invariant

manifolds of tensors F consists in subjecting F to linear symmetry
conditions of the form

-sF = 0. (2.1)

This suggests introducing the symmetry operator

a - a(s] s. (2.2)
*

Such operators can be added and multiplied with arbitrary

numbers, and two operators a, b can be applied successively
with the same result as the symmetry operator c = ba defined by

(t'). (2.3)
' -

In other words, we are here led in a most natural way to the

algebra p of the symmetric group TT = rrf of all permutations s.

The elements of this algebra, which constitute an /{-dimensional
linear space r, appear as operators which can be applied to
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tensors of order /. We may call the numbers a(s) appearing
in (2.2) the components of the element a. In particular, a is

an Hermitian operator in the tensor space 31' if it is a real

element, i.e. if it coincides with its Hermitian conjugate a
defined by the equation

a(s)
= (O. (2-4)

Hence these real symmetry operators represent physical quan-
tities of the physical system consisting of /equivalent individuals,
whose total system space is ffl

; quantities of this kind are

unknown in classical physics and cannot be pictured in terms

of the usual spatial and temporal models. 2

'

(2.1) or

a(s)x(s)
=

8

is a linear condition which is imposed on the element x = F
defined by x(s) sF. A symmetry class is defined by one

or more equations qf this kind
;
we are thus led to the definition :

Each linear sub-space $ of t determines a symmetry class ty

of tensors. F belongs to ty when the corresponding symmetry
quantity or element F is in p. It will be found convenient to

denote the process by which ^ is generated from
{) by a symbol ;

we write ^ $p.
If the reader finds it difficult to operate with elements F

whose components sF are tensors rather than numbers he may
replace the tensor by the totality of its coefficients F(i l i2

' * *

v)
and F by the elements

x = F(iLi2 if }

associated with each definite set of indices (i^i2 if] ;
this x

is defined by the equation

x(s)
- sF(ili^ if}.

The requirement that F belong to
})

means that F(ili2 if)

belongs to $ for all the nf possible combinations of the indices i.

That the symmetry class ty
=

$J)
is invariant with respect to

all symmetric transformations (1.2) is due to the fact that (1.2)

implies the corresponding equation for the elements F, F'.

F f

(i li2 i/) is a linear combination of the elements F(k l
k 2 &/)

associated with the various combinations (k^k 2 &/) of indices k.

If F belongs to
\>
then a F does also, where a is any element

whatever of the algebra. To show this we note that the

^-component of

H(i v ,,) Fft v)
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is given by

r r

where the k ly ,
kf are obtained from i ly ,

if by the per-
mutation r. Hence H (i^ *,

if)
is a linear combination of those

F(k l kf) whose indices k are obtained by a permutation of

the indices i.

The principal question now is whether every invariant

sub-space ^ can be generated from a p by the process $,
and

further, whether or to what extent this generating ty
is uniquely

determined by *. The answer is perhaps best expressed with

the aid of the inverse process tj

which generates a
J)
from the

given *$. The following geometrical analogy may be useful

in enabling the reader to understand the situation with which
we are dealing. Let the points x of a plane with a fixed centre

correspond to the elements of the algebra p and the line segments
F going out from the origin correspond to the tensors. On
contracting the entire plane, leaving the centre invariant, in

the fixed ratio r (0 ^ r ^ 1) the point x goes into the point
rx and the segment F into the segment rF

;
this contraction

of segments shall be the analogue of the symmetrical trans-

formations of tensors. *$ will now denote an
"
invariant

"

set of segments, i.e. a set such that if it contains the segment F
it also contains all the contracted segments rF. Just as we
associated the symmetry elements F(i l if)

with the tensor F
we now associate with the segment F the continuum of points

F(r) of F
; F(r) is the end point of the segment rF. Let p be

any set of points ;
the segment F will then be included in the set

ty
=

fy if and only if all its points F(r) are in p. Obviously the

only segment sets ty which can be obtained in this way are

those which are invariant, and all such invariant sets can be

so obtained. Only the
"
core

"
)p

of the point set
J)

is essential

to this construction
; p consists only of those points x such

that rx belongs to p for all r (in the interval ^ r ^ 1). p
is invariant in the sense that with x all rx belong to p . That

only the core p is essential means that our construction generates
the same segment set ty from two point sets p, p' if these latter

have the same core
;

hence we can restrict ourselves ab initio

to the consideration of invariant point sets J)
=

,p
. It is extra-

ordinarily easy to find the point set $ which generates a given

segment set *$ : we include in p those and only those points

lying on the segments of *$, and this p is automatically invariant.

If the reader will think through this geometrical illustration,

which we have formulated here in such a pedantic manner, he
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will have no trouble in understanding the analogous situation

for tensors and symmetry elements. A linear sub-space J)
of r

is to be called invariant if all elements ax are in
,
where x is

an arbitrary element of
\)

and a is any element whatever.*

Hence such a p is invariant under the totality of correspondences
of the form

(a) : x -> x' = ax (2.5)

On associating this correspondence (a) of r on itself with the

element a we obviously obtain a representation of the algebra p

(and therefore of the group 7rf} ;
it is called the regular

representation, (r appears here twice : once as the repre-
sentation space and again as the algebra p represented in this

space ;
the first will be expressed by the German letter r, the

second by the Greek p. We are here doing the same thing as

in III, 2, where we obtained a realization of the group g by
associating with the element a of g the correspondence s -> s' = as

of the group manifold on itself.) This regular representation

supplies us with material from which we can construct all

and herce in particular the inequivalent irreducible repre-
sentations of the algebra p. When we use the terms invariant,

irreducible, etc., in r they will always refer to the algebra of all

correspondences (a) of r on itself, which is simply isomorphic
with the algebra p of all symmetry elements a. p being an
invariant sub-space of r, we shall always refer to the representa-
tion induced in by the regular representation simply as the

regular representation in p ;
it associates with each element a

the correspondence (2.5) of J)
on itself. The equation x' = ax

is, in terms of components,

Let x be an arbitrary element of
J) ;

the requirement that p be

invariant allows us to conclude that the element x' defined by
x'(s)

=
x(rs] is also in p, where r is any fixed permutation.

Let
J)
be an arbitrary sub-space of r

;
we say that x belongs

to the core p of p if and only if all quantities of the form ax
belong to p ;

this is invariant. We thus have the theorem

that two linear sub-spaces p,
'

generate the same symmetry
class ty

=
$p
=

$J)'
of tensors if they have the same core. We

may therefore restrict ourselves ab initio to the consideration of

invariant sub-spaces p.

* This
"
invariant sub-space

"
is not the same as an "

invariant sub-

algebra
"
as defined in Chap. Ill, 13 ; to conform with our previous nomen-

clature it should be called a "
left-invariant sub-algebra."
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It is possible that certain relations (2.1) will be satisfied by
all tensors. Let r denote the smallest sub-space of r which

contains the elements F(t'1z 2
*

if) associated with all tensors

F and all values of the indices (ifa if). Then p generates
the same ty

=
ftp

as the intersection of
J)
with r

;
it is therefore

natural to restrict ourselves further to the consideration of

invariant sub-spaces p of r . These remarks are not applicable
if the dimensionality n ^/, for certainly the/! coefficients

F(l,2 f

.

.,/)
=

*(!', 2', ,/')

of the arbitrary tensor F are independent. But the situation

is different in case n<f: for example, let 8f
= 1 according

as s is an even or an odd permutation ;
then

is an anti-symmetric tensor and must therefore vanish in case

the dimensionality n is less than the order /.

We can at most hope that conversely p is uniquely determined

by *P if we restrict ourselves to invariant sub-spaces p which are

contained in T . In order to prove that this is indeed the case

we attempt to find the inverse process which leads from ty

to
, following the programme outlined by the geometrical

analogy considered above. In case n ^ / this is readily done
as follows : if F is any tensor in ty we let the element

x = F(l y 2, , /) in r correspond to it
; J)

consists of all the

elements x so obtained. But in order to obtain a method which
is also applicable to the case n </ we must alter the procedure.
We understand by $ = t}^$ the smallest linear manifold containing
the totality of elements F(z'1 ,

z*2 , , if) associated with all possible
tensors F ofty and all possible combinations of indices (i^* if).

If the tensors Ea constitute a basis for ty, $ consists of all elements

of the form

ii
' ' '

if)
'

(*i
' ' '

if) (2.6)

That such a p is invariant has already been shown above, for

if x = F(i li2 if) the element x' defined by x'(s)
=

x(rs) is

equal to F(k lk 2 &/) where k tk 2 kf are obtained from

i\i*
* * "

if by ^e fixed permutation r.

We now denote the t introduced above by ty$Rf ;
it coin-

cides with the entire space r when n^f. Let the symbol -S

denote
"

is contained in
"

;
the following results then follow

immediately from the definitions : If p is a linear sub-space of

t and ty
=

$p, then
\\ty> -g p. If ^ is any linear sub-space of

SR/ and p = tj^JJ,
then conversely ty -g

jjty.
We can at most
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expect that the symbol -3 can be replaced by = if in the first

theorem p is an invariant sub-space of r and in the second if

*P is an invariant sub-space of ffi. That these converse theorems

are in fact true under these limitations will be proved in 4.

3. Invariant Sub-spaces in Group Space

We are in need of a fundamental theorem concerning the

algebra of a group as a preparation for carrying through the

investigation proposed above
;
we here prove this theorem for

a general finite group. However, we do not alter the notation,
so here TT denotes any finite group of order h.

Theorem (3.1). //p is an invariant sub-space of l there exists

an element e of the group algebra having the following two prop-
erties : (1) every element of the form xe belongs to p, (2) every
element x of $ satisfies the equation xe = x.

In particular (1) implies that e le itself belongs to p,

and hence by (2) ee = e
;
e is idempotent* It is a ^generat-

ing unit" of p in the sense that p consists of all elements of the

form xe.

Proof. Let e
1? e 2 , ,

eh be a co-ordinate system in the

vector space t which is adapted to the ^-dimensional sub-space

p in such a way that p is the linear set defined by e 1} e 2 , ,
e g .

The parallel projection which transforms

x = x l
e

l + + xheh into x' x^e^ + + xgeg

has the two properties (1) it projects every x into an x' lying in

p, and (2) within p it is the identity. In the original co-ordinate

system defined by the simple elements s of the algebra this

projection is given by

x'(s)
=

t

where the matrix d(s, t)
is necessarily of the form

d(s, t)
- e^e^t) + ' + e g (s)e g (t)

and the e^s) are defined by

^(s)e k (s)
- 8,,

The fact that p is invariant implies that if x is in p then the

element xr defined by xr (s)
=

x(rs) is also in p. Consequently
the projection with the matrix d(rs t rt) has the same two prop-
erties (1) and (2), where r is any fixed permutation (i.e. element
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of the group TT) whatever. Hence the assertions also hold for

the correspondence with the matrix

fa t}=\Zd(rs, rt) (3.2)n r

obtained by summing over all elements r of the group. This

matrix satisfies the equation

e(rs, rt)
=

e(s, t),

whence e(s, t) depends only on the combination t~ ls : e(s, t)
=

^(r
1
^). The linear projection

*'(*)
= Ze(s, t) x(t)

t

may therefore be written briefly x' = xe, which proves the

validity of the theorem.

Let the invariant sub-space J)
be completely reduced into two

invariant sub-spaces :
J)
= ^ + J) 2 ,

and let e be the generating
unit of . Any element in can be written as the sum of

its components in
\) l and

J) 2 ;
hence in particular e e l + ^2-

From this it follows that for an arbitrary element x of

x = xe = xel + xe%.

But since x
l xe 1 is in pj and x2

= xe 2 is in
J) 2 ,

x l and X2

are the (unique) components of x in
)p l and ^ 2 - These two

components for the element e l are obviously el and 0, whence

e lel ej, c^e2
=

;

similarly

e 2e x
-

0, e 2e 2
= ea .

Hence e!, e2 are the generating idempotent units of $ lt p 2 re "

spectively ; they are (t independent
"

in the sense of the

equations

ee = ee - 0.

On completely reducing p into any number of components :

generating unit e of
J)

is decomposed into

e =

the components of which satisfy the analogous equations

The existence of the generating unit offers a means of ob-

taining a new and simpler proof of the fact that reducibility

implies complete reducibility :
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Theorem (3.3). //, J^ are invariant and J^ -S , then $ can

be reduced into ^ l + 2 in suc^ a way that
J) 2 is also invariant.

Proof. Let el be the generating unit of p x . We decompose
every element of

J)
in accordance with the equation

x= xel + (x xej). (3.4)

The first component xl
= xel lies in

jp l9
and the second

X2 X XCi

runs through a certain linear sub-space J) 2 of
-p
when x runs

through all elements of p. This sub-space J) 2 is also invariant,
for

ax2 ax -

(ax}el

as ax is in p if x is. The elements x
l}
x2 of ^ 1} p 2 respectively

satisfy the equations

- 0.

From this it follows that the sum of an element yl of
\) 1

and an
element x2 of 2 cannot vanish unless both^ and x 2 also vanish

;

hence
)j) 1

and p 2 are independent. To provj this we merely note

that on multiplying yl + x2 by e x we find ylel
=-.^ 0.

Equation (3.4) represents the reduction of any element of
J)

into its components in
)f l and ;p 2 -

Any idempotent element e generates an invariant sub-space

$ e consisting of elements of the form xe. If e
lf

e 2 are two

independent idempotent elements (e 1e2
= 0, e 2e l 0) then the

sub-spaces pj, ^) 2
which they generate are independent, and the

idempotent element e = e x + e2 generates ^! + ^) 2 . An
idempotent element e is said to be primitive if it can only be

expressed as the sum of two idempotent elements e l + 3 ^
one of the summands is (and the other e). In order that p e

be irreducible it is necessary and sufficient that e be primitive.

Obviously any idempotent element e, in particular the

modulus 1 of the algebra, can be reduced into the sum of

independent primitive idempotent elements. For if we have
a reduction into independent non-vanishing idempotent elements

e - e
l + e 2 + + em

and if, for example, e
v

is not primitive, it can be further re-

duced to the sum of two independent non-vanishing idempotent
elements e/ -f- a/' ;

in this way we obtain a complete reduction

of e into m + 1 independent terms, for we have, for example,

e'
l
e2 e(e Le2 ; similarly e^e(

= 0.
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This process must certainly cease after at most h steps. Our

analysis allows us to assert that we thus obtain a complete
reduction of

)j) e
into independent irreducible sub-spaces.

We have seen that the theorem concerning the complete
reducibility is a consequence of the existence of a generating
unit. But the converse is also true : If p appears as a summand
in a complete reduction r = + J)'

of our given algebra t, then
it possesses a generating unit. We need only to specialize the

considerations developed above by applying them to the modulus
1 of r

;
1 can be completely reduced into the two components

e + e' lying in p and
',
and the generating units of p and J)'

are e and e' respectively.
The mathematician will find it worthy of note that all these

considerations are still applicable when the algebra is defined

over any field whatever. Instead of dealing with the continuum
of real or complex numbers, as in analysis, we may in abstract

algebra operate in an arbitrary field, i.e. a domain of elements,
called numbers, in which the two fundamental operations of

addition and multiplication and their inverses, subtraction and

division, are defined in accordance with the formal laws of

ordinary arithmetic. Our development depended only on these

rules of operation with a slight restriction. There are fields in

which a definite integer, say h, times any number of the field

yields zero
;
we may say that h annihilates. Such " modular "

fields must be excluded, for we wish to retain the possibility
of finding a number such that its product with h is any given
number. When our reasoning involves no more restrictive

assumptions concerning the number field, we are operating in

a relatively elementary theoretical domain. However, such

theorems as the
" fundamental theorem

"
III, (10.5), and that

of Burnside-Frobenius-Schur, which depend on the fundamental
theorem of algebra, belong to a deeper layer. These theorems

hold only in
"
algebraically closed " number fields, in which

any algebraic equation (with coefficients in the field) is soluble.

Finally such concepts as
"
Hermitian,"

u
unitary," etc., involve

the transition from a number to its conjugate complex and
have no place in general abstract fields. Our earlier proof of

the theorem of complete reducibility was obtained with the

aid of such tools foreign to the general concept of a field.

Theorem (3.5). A similarity projection x -> x' of the invariant

sub-space ty
on the invariant sub-space p' is necessarily expressed

by an equation of the form x' = xb. (In particular, when p
and

J)'
are equivalent this theorem is applicable to the one-to-one

similarity correspondence p fj p'.)

Proof. Let the given similarity correspondence send the
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generating unit e of p over into b. In virtue of the similarity
xe then goes over into x' = xb

}
where x is any element in p ;

but for such an element xe = x.

Additional remark. The projection sends e into eb
;

hence
eb = 6. On the other hand, if e' is the generating element of

J)',
then since b is in

' we have />e' = b :

b = eb = be' = ebe 1

.

We express this result, i.e. that b is of the form exe', by saying
b has the character (e, e'). Our considerations show that such
a projection can always be expressed in terms of a unique
element b of character (e, e').

If we are operating in the field of complex numbers, with which the

investigations of analysis (e.g. the theory of functions) deal and in

which we are exclusively interested in quantum theory, we may supple-
ment the theorem (3.1) concerning the existence of a generating unit e
in an invariant sub-space p by the following :

The generating unit may be so chosen that it is real ; it is then deter-

mined uniquely by \\

To prove this we choose as the basis e lt e lt . . ., e
g
of p a unitary-

orthogonal system of vectors ; then

& t (s)'k(s)
=

(*',*.
= 1,2, .... f).

8

In constructing d(s, t), which we now denote by e(s t t) t we may therefore

choose
?,-

e
i

:

e(s,t) = ei(s)e t (t). (3.6)
i = l

I assert that the equation

e(rs, rt)
== e(s, t) (3.7)

is automatically satisfied it is no longer necessary to take its mean
value as in (3.2). The element e defined by e(t~

l

s) e(s, t) is then the

real generating unit of p.

In order to establish the validity of (3.7) it is only necessary to

note that e(s, t) is independent of the particular unitary basis e lt e tt

. . ., e
g
chosen

;
for on going over to a new unitary basis e'v e

2 , . . .,

e
g by a unitary transformation U the bilinear form (3.6) remains in-

variant. Now in particular the equation

in which r is a fixed element of the group, defines a transition to a new

unitary basis.

To prove that this real generating unit e of v is unique, assume there

exists a second, e' ;
then all elements x of p satisfy the equations

xe = x, xe' = x.

On applying the first equation for x = e' and the second for x = e we
have

e'e = e', ee' = e.
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But since e and e' are both real, the first of these results yields, on

going over to the Hermitian conjugates,

ee' = e',

and from this and the previous result we conclude that e' = e.

Under these conditions the content of theorem (3.3) can be extended
and its proof simplified. If e, c l are the real generating units of p, p x

respectively, then since e is in p ee e lt and on going over to the

Hermitian conjugates we find ee! = c^ Hence the idempotent element

e, introduced by e = e l + e2 is real and independent of e^ ;
=

y^ -f p 2

is thus completely reduced into Vi and an invariant sub-space p a which
is unitary-orthogonal to pj and which has as its real generating unit e,.

4. Invariant Sub-spaces in Tensor Space

We now return to the investigation of tensors of order /,

the totality of which constitutes the space W. Let TT again be

the group of all permutations of / things and r
(
=

p) the corre-

sponding group space (algebra). Let a be a symmetry quantity,
i.e. an element of the algebra />,

with components a(s) ;
the

element a is then defined by

d(s)
=

a(s-i) (4.1)

The relation

F' = aF,

which asserts that the tensor F' is obtained from F by the

operator a, is equivalent to the equation

F' = F 2

between the corresponding elements F and F r

of the algebra p.

For
sF' = ^(r 1

)
stF

t

is in fact obtained from

F' = 2X0 ' tF - d(r
l
)

tF
i t

by operating on it with the permutation 5.

In the following considerations, which are concerned with

symmetry classes of tensors, p (with or without index) always
denotes an invariant sub-space of t, e the generating unit of

\)
and ty the corresponding $p. We may then say that e is

the generating idempotent operator of the symmetry class ^ in

the following sense :

(1) eF lies in ^5, F being any tensor whatever
;

(2) if -F is in ^J it is reproduced by the operator e : eF = F.

In this way we obtain ^constructive definition of the symmetry
class ty as the totality of all tensors of the form eF. This definition
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js considerably simpler than the original one in terms of p, for

it depends on a single element e instead of a manifold p. If,

for example, we are dealing with the class ty of all completely

symmetric tensors

is such an operator ;
the corresponding operator for the class

of all anti-symmetric tensors is the alternating sum

..

Theorem (4.2). // |>' -3 M' P = Pi + Pi, w* have $' -3 $,

<P
= $! + s$ 2 respectively.
We need to prove only the latter part of this theorem,

i.e. for the case of complete reduction. The generating unit

e = t?! + 2 f P has as components e lt e 2 in p l5 p 2 the generating
units of p!, ;p 2 respectively. The formula

eF - e xF + e 2F

defines the corresponding complete reduction of ty into the

independent invariant sub-spaces ^ $ 2 . ^

Theorem (4.3). 7/h ~ {) 2 *A*;i ^! ~ $ 2 .

The similarity correspondence x
l
-> x 2 of )>! on p 2 is, by

theorem (3.5), of the form
^ *,

AT2
'==-

ATj U , A^j
^^ AT2 O .

Hence

define a one-to-one similar correspondence of ^5 X on ^ 2 and its

inverse.

Theorem (4.4). 7/p -g r /A^n =!]$.
The only non-trivial part of this first converse theorem which

remains to be proved is that p -g Ij5p.
All tensors of the form

Fa = e^ia are in s

$, where
( a )

is a basis for the entire tensor

space 9l/
;
hence all elements of the form

y = 2X(h if) ^(h v)
,
i

are in ^. On introducing

* = Ec(ii ' ' '

if)
* fi(^ ' ' '

if)
<v, i

we have y = xe. On recalling the definition of t tfRf
we

see that xe belongs to ^ if x lies in r . But in virtue of the
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assumption that
\)

- r this is automatically satisfied if x is an

arbitrary element of
;
but then xe = x. Hence every element

x of
J)

is contained in
[j$.

In order to formulate the converse of these theorems let

^5 (with or without index) now denote an arbitrary invariant

sub-space of 91^ and p the corresponding tj^S.

Theorem (4.5). // $' -g $ or <$
- ^ + $ a ,

*A*/t
J)' -3 J>,

p = pj -}- p 2j respectively.

Theorem (4.6). // $ ~ $' /A^n p ~ p'.

Theorem (4.7). $ - ft).

The last theorem is by far the most important of all
;

it

asserts that every *B is a symmetry class of tensors. It is desirable

to prove it first, i.e. to prove that $p -g *$. Let e again denote

the generating unit of
)) ; $p then consists of all tensors of the

form F' = eF. Since the element e belongs to
J)

it is necessarily
of the form

e(s)
=

e(s~i)
= Zea(k,

- -

k,)
- sE^k, k,), (4.8)

. k

where the tensors E^ constitute a basis for the space ^5. Now
the trivial equation

4X1, if) -JsFfa
- -

it )
- Zc(i, if] F(i l if)

shows, on replacing sc by c, that

EC(II
' ' '

if]
'

sF(i1 if)
- 2>~Mh ' ' '

if)
'

F(il i

i t

Hence we may replace (4.8) by

e(s)
- Zse.fa */) ^(Ai '

A,)
,*

and the coefficients of F' are then given by

F'(ii
'

if)
= &.(ii

' ' ^ ; ^ kt)Ea (ki k,)
a,*

where

Because of the summation over all elements s of the group TT

this transformation with coefficients CM is symmetric ;
hence

the assumption that the sub-space ty is invariant allows us to

conclude that F' lies in ^5 if the Ea do. But this establishes

our theorem.

The theorem can also be proved directly, without calling

on the theorems of 3, in the following way. That F is in
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means that F(i t
i2 if) is in p and is consequently of the

Form (2.6) :

F(ii
' '

if]
= Sba (ii

'

it ; k, kf) E^k, -

k,).
a,Jt

The E# constitute a basis of ty. Writing down the ^-component
of this equation and replacing the indices i^, , if by il ,

i1

we find the equation

for the components of F. Since this holds for every permutation
s""

1 we may sum over the elements of the group and obtain

F(i l if)
= Zca(ii

' ' '

if ; *i
' ' kf) *(&! kf),

kf) =Zsb*(il if

where the coefficients

are symmetric. Hence since the E* belong to the invariant

sub-space ty and F is obtained from them by a symmetric
transformation, F also belongs to ^J.

The only part of theorem (4.5) which is not self-evident is

the assertion that p lT p 2 are independent. By theorem (4.7) we
have the relations

flp' -3 ft>i * &, fr* -3 ^P 2

for the (invariant) intersection p* of p, and ^ 2 . But since

^Pi) ^2 are independent it follows that $p*, and therefore p*,
is empty.

Theorem (4.5) shows the $ associated with an irreducible p
is also irreducible. Hence it follows, in particular, that the

manifold of symmetric and the manifold of anti-symmetric tensors

are irreducible and invariant, not only with respect to the algebra
of symmetric transformations, but also with respect to the

transformations induced in tensor space by the affine or unitary

groups of transformations in the vector space 9t. Applying
this to the 2-dimensional vector space, we see that the repre-
sentations K/ of c = C 2 or ll constructed in III, 5, are irreducible.

In order to prove (4.6) we must first examine the nature of

t (for n<f) in some detail. We call the component a(l) of

an element a of the algebra the trace of a. Hence the trace

of the product ab, which we call the scalar product tr(a6)
of a and b

}
is

tr(mb)
=

a(s)b(s-*).

Pure Mathematical Physics



300 THE SYMMETRIC PERMUTATION GROUP

The trace of a is then tr(al)
=

tr(Ia)
=

tr(a). The scalar

product is obviously symmetric in a and 6, and the symmetric
bilinear form tr(ab) is non-degenerate, i.e. a = is the only
element for which the equation tr(ax) is satisfied identically
in x.

Auxiliary theorem (4.9). t is a left- as well as right-invariant

sub-algebra of r. tr(a6) is non- degenerate within t
,

i.e. the only
element a of t whose scalar product with every element x of t

vanishes is a =-= 0.

The first part of this theorem is almost self-evident. For

if x = F(i l if) t
the element x' defined by x'(s)

= x(sr) is

F f

(i l if) where F' = rF.

Let / be the generating unit of t
,
a an element of r and

x an arbitrary element. Then since t is right-invariant ax
is also in rc ,

whence

ax = ax -

/', tr(a-v)
= tr(a xi).

Now xi is in r
;

hence if the scalar product of a with every
element xi of t vanishes then tr(ax)

= without restriction on

x. It therefore follows that a = 0, as asserted.

Proof of theorem (4.6). Let Ea be a basis for ^5, and let the

similarity correspondence of ty on *p' send Ea into the basis E'*

for *P'. Let cai (i l if) be a given system of coefficients and
write

c = Sca (i l i,) (*! if) (4.10)

a, t

The desired similarity correspondence between p and p' is naturally
to be defined by c -> c' . However, this is only possible provided
two systems of coefficients cc,(i l if)

which define the same
c also define the same c'

;
or a system of coefficients which

causes c to vanish must also cause c' to vanish.

We first remark that if a tensor F satisfies the equation

then also

G' = Sc'ts-
1
)

- sF =-. 0.

By (4.10)

c(5-
1

)
= 2;s<r<,(fe 1 *,).(*! kf),

a,k

whence
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where

*.(*i
' ' '

/ ; k
i

kf )
= ZsFfa - -

if] scafa
' kf).

X

These ca define a symmetric transtormation. Hence the given

similarity transformation ty --> *', which sends E^ into /, sends

G into G' . This proves our assertion that the vanishing of

G implies the vanishing of G'.

If c we then have

c'(s-i) sFfr if ]
=

tr[c' F(/ 1 ,',)]
=

I

for all tensors F and all combinations of indices i l ir ,
or

tr(c'x) for all elements x of r . Hence by the auxiliary
theorem (4.9) c' = 0.

T/t result of our investigations is that there exists a one-to-one

correspondence between the invariant sub-spaces p of r and the

invariant sub-spaces ty of JR/. This correspondence is as close

as possible ; irreducibility, complete reduction, equivalence and

inequivalence on the one hand imply the same on the oilier. In

particular, we emphasize the further consequence :

Theorem (4.11). Every invariant sub-space ty of 9J/, in

particular W itself, can be completely reduced into irreducible

invariant sub-spaces.
I hope that our elementary methods have made this corre-

spondence quite apparent.
It is evident a priori that we can completely reduce the

modulus 1 of the algebra p into a sum e l + e 2 + * + ^m of i n *

dependent primitive idempotent elements. The formula

F - e,F + eF + + emF

then gives the complete reduction of 9f into independent in-

variant sub-spaces ^ 1 , ^p 2 , , ^ mj each of which is generated

by one of the idempotent operators e. (^ consists of all tensors

of the form e^F.} From this point of view we might consider

as the only non-trivial result of our investigation the assertion

that the ^ generated by a primitive e is irreducible (with respect
to the algebra 2 of all symmetric transformations). Physically
this means that the class of terms corresponding to such a $
cannot be further divided into parts which cannot -under any
conditions interact with each other. If in spite of this there

does exist such a decomposition it is accidental i.e. attributable

to the special dynamical situation in the case in question.
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5. Fields and Algebras

We here interrupt our development in order to present an

axiomatic treatment of the two fundamental concepts field and

algebra ; our investigation has revealed the importance of these

concepts for quantum theory. The physicist who is not par-

ticularly interested in such a treatment may well omit these

sections.

A field is a domain of elements, called numbers, within

which the two operations of addition and multiplication are

defined and which associate with any two numbers a, )3 of the

field certain unique numbers a -f j3, ajS respectively. Addition

obeys the commutative and associative laws

a + ft
=

j3 + a, (a + /?) + y = a + (j8 + y)

and has a unique inverse, subtraction. From this follows the

existence of a unique number o (zero) with the property
a + o = o + ot=a for all a. Further, associated with each

number a is a number a, its negative, such that a + ( a)
= o.

We require that multiplication obey the associative law

(aj3)y
-

a(j9y)

and the distributive laws

(a + /3)y
=

(ay) + (0y), (/3 + y)
=

(a/5) + (ay)

with respect to addition. From the distributive law follow

the relations

ao = oa o.

Multiplication need not be commutative
;

in case it is we speak
of a commutative field. Further, division by any number
other than o shall be possible and shall lead to a unique quotient,
i.e. each of the equations

a =
fti ^a = ft

have for given a 4= ^nd given j3 one and only one solution

, T] respectively. From this it follows that the product ajS of

two numbers can only be o if one of the two factors is o. As a

further consequence, there exists a number e,
" one "

or
"
unity/'

with the property that

as = ea = a

for all a. We explicitly assume that not all numbers equal o
;

then in particular z ^ o. Every number a 4= o possesses a

unique reciprocal a" 1 with the property aa" 1 -- a-1a ~ e.
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We must introduce in addition to the numbers of our field

the ordinary numerical symbols 1, 2, 3, . Their inter-

pretation as multipliers is given by the equations

la = a, 2a = a + a, 3a = (2a) + a, ,

in general

(n + l)a = (na) + a.

In particular we can construct the series

le, 2e, -, ne, (5.1)

of multiples of 6. We then have two possibilities. (1) All the

numbers of this set may differ from e
;
then they are all different,

and we can conclude with the aid of the equation

wjS
= ne

and the division axiom that for a given number a there exists

p a . .

one and only one number jS
= - which satisfies the equation

nj3
= a

;
we can then introduce ordinary rational numbers as

multipliers. (2) The second possibility is that one of the multiples
in (5.1) is equal to e itself

;
let the least multiple of this kind be

/>e. Then the numbers of the series (5.1) repeat in cycles of

length p. p must be a prime number, for if p were the product
of two integers m, n smaller than p we would then have

o ps me we,

but by assumption neither we nor ne are o, for pe is the lowest

multiple of this kind, and this is contrary to the division axiom.

In this case we are dealing with a finite field of modulus p.*
In order not to lose ourselves in too broad generalities we

now take as our number domain a commutative field and define

a linear associative algebra of finite order over this field.

By number we mean the elements of the field, and denote its zero o

and its unit e by and 1
; by element we mean an element of the

algebra. We denote the former by small Greek and the latter by
small Latin letters. An algebra is characterized by three fundamen-
tal operations : addition of two elements, a-\-b; multiplication of

an element by a number
} ya ; multiplication of two elements, ab.

The first and second of these operations obey the familiar axioms
of vector calculus (I, 1), which we set forth here again for the

sake of completeness.
Addition is commutative and associative and has a unique
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inverse, subtraction. It then follows that there exists a null-

element o. Multiplication by a number obeys the laws

la - a, *(pc)
=

(a)3)r,

(a + flc
=

(a.) + (fie), a(6 + c)
= (0) + (our).

The order h is introduced by the dimensionality axiom : every
h + 1 elements of the algebra are linearly dependent, the co-

efficients in the equations expressing the dependence being
numbers of the field, but there exist h linearly independent
elements. A set of h such elements e ll

e 2 , ,
eh ,

called
4t

basal

units,'" form a basis for the algebra in the sense that any element

a can be expressed in one and only one way in the form*

a = a^! -f a 2 2 + * ' ' + *heh

and can be replaced by the set
(<x. lt

a2 , ,
OCA )

of h numerical

components.
Multiplication of elements among themselves obeys the

distributive laws

(a + b}c
-

(ac) + (be), c(a + b)
=

(ca) + (cb)

for both factors and the associative laws

ya b = y(db], b ya = y(ba),

(ab}c a(bc)

We neither assume that multiplication is commutative nor

that it possesses a unique inverse, division. But we do assume
that the algebra possesses a

"
one," the modulus (or principal

unit), i.e. an element e with the property ae -- ea = a for all

elements a. We shall usually not hesitate to denote the zero

and one of the elements of the algebra by and 1.

If we assume the possibility of division the algebra reduces

to a (in general non-commutative) field or division algebra of

finite order h over the given field.

6. Representations of Algebras

For the sake of the printer and in order to give the text a

more peaceful appearance we no longer emphasize the elements

of our algebra by expressing them in boldface type. This

applies in particular to the elements of the algebra p of
"
sym-

metry quantities
"

which we may often denote by this latter

expression in case of possible confusion with the elements of

the underlying group. We still employ this means of distinguish-

ing between the tensor F and fhc symmetry element F or when
we wish to consider an element as an operator acting on a tensor.
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We start with an algebra p of finite order h. the elements of

which constitute an /^-dimensional vector space r, and associate

with the element a of p the correspondence

(a) : #-#' = ax

of r on itself. We consider the algebra (p) of transformations

(a), which is simply isomorphic with the algebra p, as funda-

mental for the vector space r, i.e. the term reducible, invariance,

etc., as applied to sub-spaces of t are with respect to the

group of transformations (a). We assume that t can be com-

pletely reduced into irreducible sub-spaces p x + 2 -f- ;
each of

these sub-spaces then contains an idcmpotent generating unit

e
\}

e&
' ' * We have already seen that this assumption is true

for the algebra associated with any finite group at least under

the restriction that the field over which the algebra is defined

does not have as modulus a .prime number which is a factor of

the order h of the group.
We discussed the representations of a group or of the corre-

sponding algebra in Chapter III. We found that the irreducible

representations are subject to certain important conditions

which, surprisingly enough, limit their number and which,

together with the as yet unproved
"
completeness theorem/*

lead to the reduction of the given algebra into independent

simple matric algebras (III, 13). That we were unable to

prove the completeness theorem with the methods there em-

ployed was to be expected, for we assumed that the representa-
tions were given and examined their properties ;

we had no

general process for the construction of representations of the

given algebra. But we are now in possession of the materials

for such a construction : the reduction of t into irreducible

sub-spaces p t
reduces the regular representation into as many

inequivalent irreducible representations of our algebra as there

are inequivalent invariant sub-spaces p t
. We shall now carry

out this construction process to the point of obtaining the re-

duction of our algebra into independent simple matric algebras ;

it will be desirable to derive the previous results again from this

standpoint. A further difference between this investigation
and that of Chapter III consists in the fact that we here refrain

as long as possible from placing restrictive assumptions on the

commutative field over which the algebra is defined
; only at

the end of the investigation do we discuss the advantages at-

tributable to the fact that the continuum of complex numbers,
the only field in which we are interested for the physical appli-

cations, is algebraically closed.
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Theorem (6.1). Every representation of the algebra p is com-

pletely reducible into irreducible representations. Each of these

irreducible constituents is equivalent to the representation induced

in some p, by the regular representation.

(Hence the complete reducibility of the given algebra implies
the complete reducibility of its representations. Further, every
irreducible representation is contained in the regular repre-

sentation, which therefore constitutes an appropriate starting

point for obtaining all representations by the method of reduction).
Let jp be an w-dimensional representation, and let e l7 e 2 , ,

e n be n fundamental vectors constituting a co-ordinate system
in the representation space 9ft of . If the element a of the

algebra corresponds to the linear correspondence A in
,
we

interpret the equation

where j', j are vectors in 9ft. If e is a given fixed vector and x
runs through all elements of one of the irreducible invariant

sub-spaces J)
= ^ of r then, as we shall show immediately,

xe runs through a certain sub-space p(e) of 9ft which is invariant

with respect to . Indeed, the transformation A associated

with an arbitrary element a sends xt over into (ax)e, and if

x is in p, ax is also. J)(e)
is either or is similar to p in the sense

that different x generate different images #e, for those x of p
for which x constitute an invariant sub-space

'

of p, and
in virtue of the assumption that p was irreducible p' must
either be or p itself. Hence if p(e) 41 the representation
induced in p(e) by ) is equivalent to the regular representation
in p.

These considerations are to be supplemented by the following
remark. If ty is any invariant sub-space of 9ft then Jj(e) is either

independent of ^ or is contained entirely in ^S, for those elements

x of
J)

for which x lies in ^5 constitute an invariant sub-space
of p, which is therefore necessarily either or p itself.

Now construct successively

Each sub-space in this list is either entirely contained in the

sum of the previous ones or is independent of this sum
;

on

retaining only those sub-spaces for which this latter possibility
is realized we obtain a reduction of 9ft into certain invariant
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sub-spaces pi(e fc). To prove this theorem we need only to note

that the sum of the sub-spaces contained in the first row con-

tains at least the vector e lt that on adding to them the sum of

those contained in the second row we obtain at least the vector

e 2 in addition, etc.
5

The theorem just proved is in particular applicable to the

symmetric group TT, and we now wish to establish the analogue
for the algebra 2 of symmetric transformations in the space 31^

of tensors of order /. We already know that W can be reduced

into sub-spaces ^J t
which are irreducible with respect to 2

(provided the number field over which is defined does not have

as modulus a prime ^/). Every transformation A of 2 is at

the same time a transformation A
%
of ^ t

- on itself and the corre-

spondence A -> Ai is naturally a representation of 27, the
<l

representation induced in ^ by the algebra 27." We wish to

show that the representations of are completely reducible

into irreducible constituents, and that each of these constituents

is equivalent to the representation induced in some ^J t by the

algebra 27. Naturally this does not follow immediately from

theorem (6.1) ;

in order to establish the connection between
the two we must show that the complete reducibility of ffl into

irreducible invariant sub-spaces ^ t
-

implies the same for the

algebra 27. We apply the notation and conventions given at

the beginning of this section to the algebra 2 : (A) is the

correspondence

S -> S' = AS

of the
"
vector space

" 2 on itself, A -> (A) the regular repre-
sentation of 27; the algebra of transformations (A} }

which is

simply isornorphic with 27, is taken as fundamental in the vector

space 2, i.e. the transformation group of 2 consists of the

transformations (A}.

Theorem (6.2). Let 2 be an algebra of transformations in a

vector space 9ft,
and let 9ft be completely reducible with respect to

this system 2 of transformations into irreducible invariant sub-

spaces *$ t . Then 2 is itself completely reducible into irreducible

invariant sub-spaces 77,-,
and the representation induced by the

regular representation in Tl
j

coincides with (more precisely^ is

equivalent to] the representation induced in one of the irreducible

tyi by the algebra 2 itself.

This theorem holds without any restrictions on the field

over which 2 is defined. Let /7 be an irreducible invariant

sub-space of 2 (consisting not merely of the transformation 0),

and let R 4= be a transformation of IJ. There then exists
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a vector a in 91 such that Ra 4= 0. Let d be decomposed into

its components a,- in the various sub-spaces ^ ;
at least one of

these components, say a t
=

e, must be carried over into a vector

Re 4= by R. We now hold e fixed and let S in = St run

through all transformations of 77; these 3 then constitute an

invariant sub-space 77(e) of ty
= $ t . The "

typical reasoning
"

already applied in the proof of the previous theorem then allows

us to conclude that :

(1) /7(e) is either or
*f$,

as ty is irreducible
;

in this case

it is necessarily *$, for the vector AC 4= belongs to /I(c).

(2) 50 is the only transformation in 77 which sends C

over into 0, for those 5 of 77 for which Se = constitute an

invariant sub-space of the irreducible sub-space U. Hence
g = Se sets up a one-to-one correspondence between 77 and ty.

This correspondence is similar, for S' = AS implies that

the vectors = Se,
'

S'e satisfy the equation
' = A%. We

have thus proved the second part of our theorem : the repre-
sentation induced in 77 by the regular representation coincides

with the representation induced in ^J by the algebra itself
;

briefly, 77 is similar to some *$,.

Since Se runs through the entire sub-space ^5 when S runs

through 77 there exists an E in 77 such that Ee = e
;
then

E*t = e. Since the transformations E and E2 of 77 both

associate the same image with e they are identical : E is idem-

potent. Hence E can be completely reduced into two inde-

pendent sub-spaces 77 + Z" in accordance with the formula

5 = SE + (S
-

SE).

[Cf. the proof of Theorem (3.3).] Successive application of

this procedure leads to the complete reduction of 2 into its

constituents 77,.

Having proved Theorem (6.2), we obtain from Theorem

(6.1), under the same assumptions, the further theorem :

Theorem (6.3). Every representation of 2 is completely
reducible into irreducible representations. Every irreducible re-

presentation of coincides with the representation A -> A
i

induced in some ^S< by the algebra Z itself.

Theorem (6.1) yields the further (rather uninteresting) fact

that not only is every 77, similar to some
5$,-,

but also conversely

every ^< is similar to some 77,.

As has already been indicated, all of these results are applic-
able to the algebra of symmetric transformations in tensor space
W. But we have shown in 1 that this algebra can be replaced
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by the group (c)f induced in tensor space by the group C of

linear transformations

< = Z*(ik)xk [det (a(ik)] * 0] (1.3)
* = 1

of n-dimcnsional vector space, i.e. by the representation (c)-f
of

C. We shall say, that a representation of C is of order / if the

components of the matrix A, which corresponds to the element

(1.3) of the group, are rational integral functions of the a(ik)

of order/. Our theorem then asserts :

Theorem (6.4). Every /
th order representation of C is com-

pletely reducible into irreducible representations, and every irreduc-

ible representation of orderf of t is containedin the representation (c)A

This theorem is still valid on restricting the affine group C to

its unitary sub-group u. (Naturally the concept
"
unitary

"
im-

plies that we are then no longer dealing with an arbitrary field,

but are operating in the field of all complex numbers.)

7. Constructive Reduction of an Algebra into Simple
Matric Algebras

We again assume that the algebra p of order h, which may
at the same time be considered as a vector space t of h dimensions,
is completely reducible into irreducible invariant sub-spaces ,.

The generating units e+ of these irreducible t
- are obtained by

the corresponding reduction of the modulus
;

we can then

express an arbitrary element x of r as the sum of its components
in the various p t :

1 = 2>< fainp,), * = 2>. (7.1)
i t

If q is a sub-space of r we denote by qa the totality of elements

of the form %a where x runs through all elements of q ; e, with

or without index, is an idempotent element, usually primitive ;

p = ie the invariant sub-space generated by e
; I)

the repre-
sentation of p induced in

J) by the regular representation.
We could consider in addition to the reduction (7.1) of t

into left-invariant sub-spaces the analogous reduction into

right-invariant sub-spaces by means of the equation

But the most complete separation into mutually independent

components is obtained by carrying out both of these processes

simultaneously :

x = Ze,xe k
- Zxik . (7.2)

t, k t, *
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The elements of the form ei%ek are those of character (e i} e^),

or briefly (ik). Let p tfc be the sub-space consisting of all elements

of this character. The various
ty ik are independent and the

entire t is reduced into the sum of the $ ik ;
the original left-

invariant ))*
=

tyi k . The important properties of
ty ik are given

i

by the following :

Auxiliary Theorem (7.3). I. // p, {)' are two inequivalent
irreducible sub-spaces with generating units e, e', all elements of
character (e, e') are = 0.

II. The elements of character (e } e} constitute a field or division

algebra which is simply isomorphic with the system of similar

projections of $ on itself.

Proof. I. Let a be any element of character (e } e'}. The
transformation

[a] : *->#' = xa (7.4)

carries every element x of p over into an element x
f

of
'

and
defines a similar projection. Conversely, we know that any
similar projection of

\)
on p' is defined by an equation of this

form, and that the generating element a of character (e, e'} is

uniquely determined by the projection. If and
{)'

are irre-

ducible our
"
typical reasoning

"
leads us to the two usual

alternatives : either the projection associates with every element

x of p the image x' or it defines a one-to-one correspondence
of $ on tf'. The equation ea a tells us that the first alternative

is possible only if a 0, and the second implies that p and
J)'

are equivalent.
II. The above remarks are applicable to an element a of

character (e } e} and the similarity projection of p on itself which
it generates. If p is irreducible every such projection, except
the one defined by a 0, is one-to-one and consequently has

an inverse. But the existence of an inverse is identical with

the possibility of division. The isomorphism asserted in the

theorem is apparent on reversing our usual procedure, and

reading the resultant of two or more correspondences from
left to right, for the resultant of the correspondences

x' = xa
}

x" = x'a'

is given by
x" = x(aa'}.

We now proceed with the help of this auxiliary theorem as

follows : Arrange the
,-
into classes of equivalent sub-spaces

with generating units
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and add together the generating units in each of these classes :

We then have
1 - e' + " + -.

(7.5)

r - r' + r" + (7.6)

where r', t", denote the inequivalent sub-spaces re', re",

into which t is reduced.

Part I of the auxiliary theorem above then tells us that,
for example,

e'*e" = 0.

Hence the product a'a" of two elements belonging to different

sub-spaces r', r" is always 0, and the reduction

a = a' + a" + = ae' + as" +
leads to the multiplication rule

ab - fl'6' + a"b" + .

From this it follows that t' is both right- and left-invariant and
a fortiori constitutes an algebra p (" invariant sub-algebra ") ;

e' is the modulus of p '. The given algebra is then the direct sum

of the simple algebras p ', p", -,
where the precise meaning of

direct sum is defined by the following :

Let p', p", be algebras (defined over the same field), and
consider as the elements of a new algebra p, the direct sum of

p', p", ,
all sets

a = (a', a", )

consisting of an arbitrary element a' of p', an arbitrary a"
of p", . The fundamental operations in p are defined by

(', a", ) + (*', b", ..) = (*' + b', a" + b", ),

AK a", )
-

(Aa'; Aa", ),

(a', a",
-

-)(b', b", )
=

(a'V, a"b", )

where A is any number.
Note that the central of the algebra p obtained by direct

summation is the direct sum of the centrals of the individual

algebras p', p", .

We investigate in detail one of these simple sub-algebras,

say p', which we now denote simply by p ;
its modulus

'

may now be denoted by 1. On omitting the primes, the de-

composition of 1 into equivalent primitive idcmpotcnt elements

e i is expressed by

1 = * + <? 2 + + e.
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Every element a of p is reduced in accordance with the formula

(double Peirce reduction)

<,* = ! t,*

into components of characters (ik). The component c ik of the

product c ~ ab is easily seen to be expressed in terms of the

components a ikt b 1k of a and b by the equation

We have thus already obtained the connection between our con-

siderations and the matrix calculus.

The invariant sub-spaces jp ly 2 ,

* *

', r generated by the

e lt e%, ,
er are all equivalent. Let

J)
be any of these classes,

e.g. J) p!, and let JT
t
. be any fixed one-to-one similarity corre-

spondence of
p,- on p. In accordance with (7.4) any element

a = aik
= e

t
ae k

of character (e i9
ek] generates a similarity projection [a] of

<

on
ty k ;

this projection can be written in the form

[a]
= r.a/V 1

(7.7)

where a is a similarity projection of
J)
on itself. But by Part II

of the auxiliary theorem proved above the similarity projections
of $ on itself constitute a field (division algebra) which is simply
isomorphic with the set of elements of character (#, e). If is

of order v each of the r left-invariant sub-spaces

is of dimensionality g = r v. The number of times r an irre-

ducible representation occurs in the regular representation is

accordingly a factor of the dimensionality g of the representation.

Any element a can be reduced into its components aik ,

which may be any elements of the independent sub-spaces \) ik .

In accordance with (7.7)

[a ik]
= /Xi/V 1

(7.8)

and aik may be replaced by the corresponding element <x ijk of

the field 0. Since conversely any such element a ifc is by (7.8)

associated with a similarity projection [aik ]
of

:p t
- on

J) fc ,
and there-

fore with a definite element aik of character
(iK)^

we obtain 3
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one-to-one reciprocal correspondence between the totality of

all elements a of the simple algebra p and the totality of matrices

22

r2

(7.9)

of order r whose components a
ifc

are elements of the field 0.

The correspondence is such that to the three fundamental

operations of the one (addition of elements, multiplication of

an element by a number and multiplication of two elements)

correspond to the same operations of the other. Note that in

particular

We have thus proved :

Wedderburris Theorem.* Any of the simple algebras, whose

direct sum constitutes the given algebra />,
is simply isomorphic

with a simple mntric algebra in a certain field (division algebra]

defined over the field of the original algebra.

(Remark. The invariant sub-space $ k consists of all elements

a such that the matrix ||aa.||
has as its only non-vanishing column

the &th
. The element e

f
is then described by that diagonal

matrix all of whose components vanish except the one occupy-

ing the i
th

place, which is 1.)

It is readily seen that the central of the simple algebra p
consists of those elements whose matrix (7.9) is of the form

a

a

0*

where a belongs to the central of the field 0.

Our construction was divided into two steps. First r was

completely reduced into the sub-spaces t', r", which are

both right- and left-invariant and then these were further

reduced into the left-invariant sub-spaces p,-.
We must now

return to the consideration of the first step. On multiplying
#s' on the left by (7.5) we find

and on multiplying e'x on the right by the same factor
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Hence

xe' = E'X
;

the e', e", commute with all elements and belong to the central

of the algebra. The sub-spaces t' p , t", are both right-
and left-invariant in the sense that neither the transformation

x' = xa nor x' = ax leads out of them, and they are furthermore

irreducible in this respect indeed, it is for this reason we call

them "
simple." In order to show this we proceed as follows :

(7.10). If t is a sub-space which is both right- and left-

invariant then cither e
t

is contained in t or t t 0. For
t

,
is an invariant sub-space of the irreducible pj and is there-

fore either or p,- itself. In the second case we have

since T is right-invariant ;
hence e { is contained in r^

(7.11). If e t
is in T the same is true of any e which is equi-

valent to
t

. For the similarity projection x' = xb of p, on
J)

associates e with some element a
t
of

J), by means of the equation
e a

l
b

1
and since a,- is in t e is also.

(7.12), If t -3 t' then since t = Z
r

t *
t
- not all the t - can

t

be empty, i.e. one of the
e\
must occur in t . But they must

then all occur in t
,
hence also e' = Ee'^ and consequently t t'.

t

(7.13). Again let t be a right- and left-invariant sub-space.
Then either r e' = t' or it is empty; in the former case e' is

in t . It follows from

that t is necessarily the sum of certain of the spaces t', t", ;

when in particular r is irreducible in the sense of right- and
left-invariance it must coincide writh one of the t', t", .

Hence the reduction (7.6) is unique. This further shows that

every right- and left-invariant sub-space r possesses a generating
unit i which belongs to the central of the algebra, and that t

can be completely reduced into r and a supplementary right-
and left-invariant sub-space.

(7.14). If p is an irreducible (left-) invariant sub-space with

the generating unit e, then pe' is invariant, and since pe'
=

e'p

it is either or itselt. Since

the equation pe = $ must hold for some one of the e', e", ,

while for all others J)e 0. We then say that e belongs to
J)
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and that conversely e or p belongs to s. p is a sub-space of the

right- and left-invariant te.

An algebra p = t, concerning which we only assume that it

is completely reducible into irreducible invariant sub-spaces J) tl

is necessarily obtainable by successive application of the follow-

ing processes :

(A) Construction of a field
;

(B) Transition to matrices : we take as elements the matrices

of a fixed order r whose components are arbitrary elements of

the field
;

(C) Direct summation.
The processes (B) and (C) are formally completely determined

and are therefore of an elementary character. Hence the

construction of algebras is reduced to the construction of fields,

i.e. of special algebras in which division is possible (" division

algebras ").

The converse is naturally also true : any algebra constructed

by the three steps (A), (B) and (C) is completely reducible, for:

(A) If the algebra t is itself a field, t is itself an irreducible

sub-space of t. For if a is any non-null element of the field

then fa runs through the entire field with f ;
this is merely

the content of the division axiom.

(B) The matrices (7.9) in which all components of every
column except the z

th vanish constitute the irreducible sub-

space p tl
and the space r of all matrices is the sum of these

,-.

J), is irreducible
;

to show this we must prove that if a is any
element in p, then any element of p t

can be expressed in the

form xa. a as well as a' = xa has as its only non-vanishing
column the z

th
; dropping the last index t, we denote these two

columns by

(i, <*2,
' '

', r), (
a

i, <4
' '

', <0,

respectively. The equation a' = xa is then

*-=!

we are therefore concerned with proving the theorem that any
non-vanishing "vector" (a^ a r) can be transformed into

any given
'*
vector

"
(040^

' ' '

C) by an appropriate linear

correspondence. Since not all the a* vanish take one of them,

say a2 ,
which does not vanish and let all g ik for which k 4= 2

be
; f 12 is then to be determined by the equation

that this is possible is guaranteed by the division axiom.
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(C) The assertion is self-evident for this step.
In general only the first step, (A), does not lend itself to an

exhaustive formal treatment. However, if the field over which

tfie field (" division algebra ") referred to in (A) is defined is

algebraically closed this step becomes extremely simple :

The only division algebra of finite order over an algebraically
closed field is this field itself.

Proof. Consider an algebra of order v defined over an

algebraically closed field. If a is an element of the algebra
there must exist a linear dependence between the v + 1 powers
a v

y
av~ l

, , a, 1, i.e. a linear relation whose coefficients are

numbers of the field. Hence a satisfies an algebraic equation
of degree m ^ v :

/(A)
= A + y^- 1 + -f ym

f(a)
= am + y^" 1 + + ym l = 0-

Since the field is algebraically closed /(A) can be expressed as

the product of linear factors :

/(A)
=

(A
- ax)(A

_
,)

. . .

(A
- am).

Correspondingly

(a
-

ai l)(a
- a 2 l) (a

- am l)
= 0. (7.15)

We now introduce the assumption that the algebra of order v is

a division algebra ;
then the product of two or more elements

can vanish only if one of the factors is 0. Hence we may con-

clude from (7.15) that a= a^l for some t; the algebra then

consists of the products of the modulus 1 with any number of

the fundamental field, and therefore the algebra itself is simply

isomorphic with this field.

If we are dealing in the field of all complex numbers the

auxiliary theorem (7.3) can be replaced, in accordance with
the above, by the more definite :

(7.3'). All elements of the form ex'e are zero if the primitive

idempotent elements e, e' are inequivalent. If they are equivalent
all such elements are multiples of one of them (which is different

from 0).

Further : The number of times an irreducible representation

appears in the regular representation is not merely a factor of the

dimensionality of the representation ; it is actually equal to it.

Our analysis has thus revealed the true source of this remarkable
fact.

Under these circumstances the given (" semi-simple ") algebra
is the direct sum of simple matric algebras over the original field.
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We obtain a complete set of basal units e'
ikl e^

' ' '
:

ik IK

for the algebra ;
these basal units satisfy the multiplication

law of
" matrix units,

11
i.e. products of the type

44 = 4 (
7 - 17

)

and all others vanish. The correspondences

* -*
ll<4ll, a -> IKJI,

are the inequivalent irreducible representations I)', 1)", .

The basal units e'
iit

e*
l9

are the generating units
e\, e\,

of the irreducible sub-spaces p t
with which we began our con-

struction. e'
ik

is the element of character (ik) generated by
the correspondence /W 1

^ P on *> l - Gt that element which

this correspondence associates with
e\.

After having obtained the irreducible representations in

this constructive way we derive their orthogonality properties

again from our present standpoint. For the moment let the

trace of a denote the trace of the correspondence

x->y = ax (7.18)

of t on itself which is associated with a in the regular repre-
sentation. In terms of the co-ordinate system defined by the

basal units above this correspondence becomes

Each of the g' columns of variables

&, fib,
'

'- fa (k
=

1, 2, -, g'}

undergoes the transformation with matrix
||ajj|| ;

the trace of

a is accordingly

g'
- f /, + .

i-=l

By (7.16) this is equivalent to the equations

for the basal units. Hence by (7.17)
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and all other types of products of basal matric units have a

vanishing trace.

If the algebra is the algebra of a group of order h the corre-

spondence (7.18) is expressed in the original co-ordinate system,

consisting of the elements s associated with the elements s of

the group, by the equation

y(s)
=

From this it follows that the trace, as defined above, of a is

equal to h 0(1) ;
but in the case of a group algebra we have

previously called 0(1) itself, without the factor h, the trace of 0.

On returning to this original definition of the trace we need

merely to replace the right-hand side g' of the orthogonality
relations (7.19) by g'/h. Equation (7.16) may now be solved

explicitly for the coefficients :

a,'*
-

ptr (*4) = a(s) 4(*-'). (7-20)
o o *

The connection with the development in Chapter III, 13, is

obtained by noting that the

&(*) = '(O (7-21)
o

are the components of the matrix U'(s) associated with the

element s of the group in the irreducible representation If.

The character of
f)'

is therefore

x'(s)
= - eV 1

) (7-22)
o

and (7.19) yields the orthogonality relations for the representa-
tions.

We have thus arrived at a constructive formulation of the

theory, in which the fundamental concepts involved in and the

range of validity of each step are clearly apparent. It supplies
us with a constructive method for obtaining a complete set of

irreducible representations, as well as establishing the ortho-

gonality relations.

Additional remark. In dealing with the continuum of all complex
numbers and a group algebra defined over this field we can, in accord-

ance with the remark at the end of 3, completely reduce the modulus 1

into real primitive e
i
and the space r into the corresponding unitary-

orthogonal irreducible \\. Further, the projections r
t
- can be normalized

in such a way that e'
ki

is conjugate to e
{k

. To show this we note that
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the conjugate of e'
lk

is under these conditions an element of character

(hi) and must therefore be the product of e'
ki by a number yik :

The rules
/ / _ / ~' _ -' -/

e
il
e
kl

e
il>

e
il

ekf\k

yield the conditions

on the coefficients. Further, yik is real and positive, for from (7.23)

and (7.19) we find

We then find that the yik can be brought into the form yit
=

ft\lft\ t where

the
PJ

are positive real numbers (take, for example, )3?
= ylt-).

On re-

placing the original correspondences /J. by /^/^ we find that the new e^
is actually conjugate to the new e'

ik
. Our representations I/, if, are

accordingly thrown into unitary form.

B. EXTENSION OF THE THEORV AND PHYSICAL APPLICATIONS

8. The Characters of the Symmetric Group and

Equivalence Degeneracy in Quantum Mechanics

The notation employed in this section is as follows : TT = TT,

is the symmetric perriutation group of / things, t = p = (TT)

the corresponding algebra, e a (primitive) idempotent element
of p, \)

= le the (irreducible) invariant sub-space of t generated

by e, t)
the representation induced in p by the regular repre-

sentation, g the dimensionality of
))

and
I), x the character of

I),
e that element of the set e', s", (7.14) to which the irre-

ducible p belongs ; *$ the corresponding symmetry class of

tensors of order /, consisting of all tensors of the form &F,
the representation^ the algebra 2 of symmetric transformations

(and therefore of the linear group c) which is induced in ty by S
itself. When further differentiation is necessary, we also denote

this by JQ(X) or n (x) In case the considerations are valid

for an arbitrary finite group TT,
h denotes the order of TT (== /!

for TTf).

Determination of the Group Characters.

We begin by calculating the character of the representation I).

To this end we construct the trace of the linear correspondence

*-> y = a* (8.1)
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of p on itself
;

the considerations of the previous section show
it to be

Now consider instead of (8.1) the projection

x -> y = axe (8.2)

of the total space t on p ;
it coincides with (8.1) within

J)
and

sends any element x of r into an element y of
J).

On choosing
the co-ordinate system in t in such a way that the first g funda-

mental vectors span the sub-space p, the last h g rows of the

matrix of (8.2) consist only of zeros
;

hence the trace of the

projection (8.2) of the total group space is equal to the trace of

the correspondence (8.1) in
J).

In terms of components equation

(8.2) is

y(*)
- 2XWXO, (t*'t

-
*)

and the trace is therefore

where the inner sum is extended over the pairs /, t' of elements

of the group which satisfy the equation 1st' s, or explicitly,

the trace is

Hence the character x of
f)

is given by

or

X(*)
= Ze(rs-

lr~ 1
}.

/8 3)
r * '

In particular, the dimensionality g of the representation t) (and
the space p) is

X(0 = *(!).

Resonance or Equivalence Degeneracy.

The significance of our results for quantum mechanics, as

first recognized by Wigner, is the following.
7 The complete

reduction of the tensor space ffl into invariant sub-spaces ^J t
-

implies a separation of the terms of the physical system //,

consisting of / equivalent individuals / (electrons), into sets of

terms which no dynamical influence whatever can cause to

enter into combination with each other. We have further seen
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that the reduction of W into the $< parallels the complete
reduction of the total group space t of the symmetric permutation
*roup TT into invariant sub-spaces p t-. Hence there is a system of
terms associated with every irreducible representation f) of TT

which' we denote simply as the term system x> using the

character x of
1)

as a name for the system and the multiplicity
of this term system is the number m(x) of times that

I)
occurs

in the regular representation. This suffers a slight modification

in case n </, for we must then ignore all
J) t

which are not con-

tained in T =
t|9?A

But since t is both right- and left-invariant,
all sub-spaces which are equivalent to an irreducible invariant

p lying in T are also in r . Hence the multiplicity of the term

system x is m(x) or according as that e with which the character

X is associated by (7.22) is in r or not. From the physical

standpoint, the only additional fact of interest obtained from
the more extended theory built up on the assumption that the

number field in which we are operating is algebraically closed

is that then the multiplicity m(x) is equal to the dimensionality

g of the representation I). Furthermore, it is impossible to

resolve this multiplicity by any physical means whatever, for

corresponding terms in these various term systems remain in

coincidence under all dynamical influences.

We consider the resolution of terms in the case in which the

interaction between the / individuals is expressed by a small

perturbation energy \W, neglecting higher powers of the small

parameter A. Assume for the moment that the energy levels

^ii ^2 ' ' '

of a single individual I are non- degenerate. On

neglecting the perturbation // possesses energy terms of the type

E = El + E2 +- + ,; (8.4)

we first concern ourselves with such a term. Its multiplicity

is /! and the corresponding co-ordinates in tensor space are the

coefficients F(z 1 ,
t'2 , if) whose indices are any permutation

s of 1, 2, , /. This coefficient F(ilit i/) is the component

x(s) of the element

x = F(l, 2, -.,/)

of the algebra (IT).
The separation of the term (8.4) is to a first

approximation determined by the reduction of the correspon-

dence

F(i<i*
'

if)
= 2>(h*i '*/; *i*t

' ' ' kf)F(k lk2 *,)
<*>

to diagonal form
;
here the matrix of the coefficients a represents

the energy and ilf i'8 , ,
if ;

fe lf 2 , ,
kf are permutations

Pure Mathematical Physics



322 THE SYMMETRIC PERMUTATION GROUP

s, t of 1, 2, , /. This equation may therefore be written in

the form

*(s)
= Z*(s,t)*(t). (8.5)

t

The equation

(V ' * ' ^ '

*i'''' kf ')
= a(i l !/; *, fe,)

describing the symmetry of a, in which

!->!', ',/->/'

s any fixed permutation r, is expressed by

a(sr, tr)
=

a(s, t)

for the only coefficients in which we are here interested
;
r is here

considered as applied to the indices 1, 2, , /themselves rather

than the sub-indices. Hence a(s } t} depends only on st~ l
:

a(s, t)
=

a(st~
l
) 9

and equation (8.5) may now be written in the abbreviated form

(a) : x = ax (8.6)

where a, x
}
x are the symmetry elements of the algebra (IT)

with

components a(s), x(s), x(s).

On restricting ourselves to an invariant irreducible sub-space

*P of the system space 9V the element x of
(IT)

lies in the corre-

sponding p. The g terms W l} W2 , ,
W g into which (8.4) is

resolved by the perturbation and which belong to the term

system x under consideration are, to the approximation involved

in the perturbation theory, the characteristic numbers of the

correspondence (8.6) of $ on itself.
. The sum of these terms must

therefore equal the trace of this correspondence, or

Wi + W t + + W. = Za(s}x (s}. (8.7)
8

The sum of the squares of these terms, of their third powers,

etc., are obtained by reiterating the correspondence (a), i.e.

W\ + Wl + + Wl - ZaT (s) X (s), (8.7')
8

where the ar (s) are the components of the symmetry element

ar
:

a (s]
= 1 or 0, according as $ = 1 or 4= I, ^ ,R m

OrM = Z*,(st-
l
)*(t). I

( '

t

As soon as the
"
exchange energies

"
a(s) are known we can

apply this formula to calculate those of the terms arising from
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(8.4) which are contained in the term system x }
for this we need

only to know the character x it is not necessary to have an

explicit expression for the idempotent generator e or the

representation Ij
of IT.

These considerations are immediately applicable only if we

ignore the spin phenomena. If we take into account the per-
turbation due to the interaction of the electrons before that

due to the spin, as in the case of normal term order, the mere
existence of spin implies that each of the energies E { is at least

two-fold. We shall later concern ourselves with the far-reaching
modifications caused by the spin and by the Pauli exclusion

principle, which enables us to discard the majority of possible
terms.

The unperturbed If will have, in addition to terms of the

type (8.4), terms in which groups of two or more summands

appear with the same indices. The multiplicity of the term

=/) (8.9)

with integral non-negative weights /< is but

A ,A ,

/!
. .

/>r
(8.10)

The corresponding tensor coefficients x(s) are those obtained

from
.... 2 2 ...;..)

by the permutations s of the / arguments. But a permutation
p is without effect if it only permutes the first /x indices among
themselves, the next /2 among themselves, etc.

;
we may no

longer distinguish between the permutations s and ps they
must be considered as giving rise to but one component. Such

permutations p constitute a group IT' = n(f^ /2 , )
of order

h' = fi\fji ',
and two permutations s, t are to be considered

as the same if they are left-equivalent with respect to this sub-

group TT', i.e. if s s t (ps
=

t, where p is an element of TT'}. The

only elements x of the algebra (TT)
in which we are now interested

are those which satisfy the equation

x(t]
=

x(s] when t =s s (mod. TT') ;

they constitute a linear sub-space t' = t(Tr') of dimensionality

(8.10). More precisely, t' is a right-invariant sub-algebra, for

if s s / then also sr s tr. Again a(s, t)
= afcr

1
) ;

further

a(ps)
-

a(s), a(sp]
=

a(s]

if p is in TT'.

Pure Mathematical Physics



324 THE SYMMETRIC PERMUTATION GROUP

We are now concerned with the correspondence x -> x in t' :

*(s)
= Za(sr l

)x(t] (mod. TT'), (8.11)
t

where the
" mod. IT'

"
indicates that both 5 and t run through

a complete set of elements of the group which are inequivalent
mod. TT'. As x runs through r', xe generates a sub-space p' of t'

which is transformed into itself by the correspondence (8.11),

and the reduction of this correspondence of
J)'

into diagonal
form yields those terms arising from (8.9) and lying in the term

system x- The trace of (8.11) in p' is equal to the trace of the

correspondence A,,: x -> x in r' which is obtained from (8.11)

by replacing x by xe, i.e. x(t) by

Hence

tr(A e )
= E {
8, t mod. n'

Since a^r 1

) a(rt~
1
}
when r = s (mod. TT'),

this trace may be

written

Z Za(rt-i)e(r-*t).
t mod. TI

' r

Naturally this sum does not depend on which particular element

t we have happened to choose from the set of group elements

which are equivalent mod. TT'
;
hence on dropping the restriction

on the range of t the above sum is multiplied by the order h'

of TT':

tr(A.)
= Za(rr*)e(irit) = b>Wx(*). (8.12)n r, t n 8

Here again x(s)
ls ^ie character of ^ as determined by (8.3).

In particular, the dimensionality of
',

i.e. the number of terms

in the system x arising from (8.9), is obtained by replacing the

symmetry element a in (8.12) by the element a defined by

a (s)
= 1 or 0, according as s = I (mod. TT') or not ;

this number is consequently

(8.13)

We express this result, the validity of which is not restricted

to permutation groups, in the theorem :

Let TT' be a sub-group of rr of order h' and let $ be a left-invariant

sub-space of the group space r of TT. Consider the elements x of
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the algebra (TT)
which satisfy the condition x(s)

=
x(t), where s and

t are any two elements of the group TT which are left-equivalent
mod. IT'

;
the elements of (TT) which are of this type and which

lie in
J)

constitute a linear sub-space whose dimensionality is given

by (8.13), where x is the character of the regular representation in p.

The sum of the terms is equal to the trace (8.12), and the

sums of their powers are given by

2X0X0
. . . (8.14)

W

The only way this result differs from (8.7') is by the introduction

of the denominator /j!/2 ! and the fact that ar (s) is now defined

by

t

Degenerate Case. Denote the numerically different energy
levels of the individual / by ", E", ,

and the multiplicity
of EM by nv . We now distinguish between the various variables

having the same "
principal quantum number "

v by an "
auxil-

iary quantum number "
kv which assumes nv values. An energy

level of the type

E' + " + ... + </>
(8.15)

of the unperturbed total system // has the multiplicity

/! n l n 2
' nf ,

and the corresponding tensor coefficients are those obtained

from those of type

2

& 2
" " *

kf/

by any permutation s of the /pairs (v\k)
of arguments ;

we write

instead

x(s\k lk 2 kf)
or briefly x(s\k).

Similarly the coefficients of the energy matrix are denoted by

The energy levels W arising from (8.15) by the perturbation
and lying in the term system x are, to a first approximation,
determined by

(*!*; k)x(s), (8.16)
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where a (s\k ; /)
= 1 or according as s = I, k = I or not, and

the composition is denned by

*,(s\k\ l)
= Za,(sr

l

\k; m}a(t\m; I}. (8.17)
t,(m)

If the unperturbed energy level is of the form

the tensor coefficients in which we are interested are those ob-

tained from

1 2 2
F
(k.

"

/"

Let exactly f[ of the auxiliary quantum numbers k lv(v=l,
, /') have a certain value k

ly f'2 a different value k 2 ,
etc.

;

/i +/2 + * * ' =
/'> an(i let /i, /2,

' * ' have the analogous

meaning for the quantum numbers k&(v !,, /") associated

with the principal quantum number 2, etc. Then those per-

mutations p which leave the above tensor coefficient unchanged
constitute a certain sub-group 7r'

k , depending on the distribution

of auxiliary quantum numbers k, of the group TT' introduced in

the non-degenerate case above
;

the order of Tr'k is [k]
=

f[\f^\

f[\
. a(s\k\ 1}

is unchanged when s is multiplied on the

left by an element of ir'
k and on the right by an element of f

n\.

The formula (8.16) now becomes

}
(8.18)

aQ(s\k ; /)
= 1 or according as k I and s = I (mod. TT^)

or not, and in the composition rule (8.17) we first sum with

respect to t mod. 7r'm and then over the various possibilities

m (mn ,
w 12 , ;

w 21 , ; ).

In every case we obtain explicit expressions for the sums of

the various powers of the perturbed energy levels in terms of

the character x of the term system under consideration and the

exchange energies a(s).

9. Relation between the Characters of the Symmetric
Permutation -and Affine Groups

The thorough correspondence existing between the repre-
sentations of the symmetric permutation group TT/ and the
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representations of order / of the linear group c must lead to

a simple relation between the corresponding characters. In

dealing with the linear group it suffices to consider only the
"
principal transformations

"

*<->e<*, (i= 1, 2, , n) (9.1)

of the vector space 9ft = 9ftn ,
for any linear transformation is

conjugate within C to a principal transformation except for

those cases in which two or more of the characteristic numbers
e

t
coincide. Furthermore, if we restrict ourselves ab initio to

the unitary group U the one in which we are interested in

physics the result is valid without exception and the
t
are

complex numbers of unit absolute value. The problem here

proposed is identical with that of investigating the distribution

of the terms of // among the various term systems x m the

absence of interaction between the various individuals and when
the single system 7 is non-degenerate, for on choosing a Heisen-

berg co-ordinate system #
t
in the system space of / (i.e. one in

which the operator representing the energy of / is in diagonal
/ E t\

form) the variable x
t
assumes the multiplicative factor e( --~

j

in time /.

We denote the characteristic *
of the representation of

the linear group whose substratum consists of all tensors of the

form eF by X(S) or X(e 1 ,
s 2 , *, e n )

where the element 5 of c is

the principal transformation (9.1). The l
are to be considered

as n independent variables. The transformation of tensor space
associated with (9.1) consists in multiplying the coefficient

F(hi Z 2>
* '

', *'/)
of the tensor F by e

t

- e
t

- e
lf

. The sum of

all these multipliers, extended over all linearly independent
coefficients of a general tensor of the form F' eF, is the desired

characteristic. A component in which fl
of the arguments i are

equal to 1, /2 are equal to 2, -is multiplied by {* e^
" " * e

n'-

But the number of linearly independent components of F 1

of

this type is, by equation (8.13),

here x l $ the character of the representation I)
of 777, the sum

being extended over all elements s of the group) TT' TT(/I, /2,
* "

")

which permutes the first fl numerals among themselves, the next

/2 among themselves, etc. That this number (9.2) depends only

* We prefer, foi the sake of clarity, hereafter to employ the word
"
characteristic

"
for continuous and "

character
"

for finite groups.
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on the character x is a fact of greatest importance for our present
considerations. The result is

8

X(e lf
e

t> )
=

where the inner sum is extended over all the elements s of

^(/i) /2>
' '

*)
We denote the value of the character x f r an

element s belonging to the class f of conjugate elements of

777 by ^(I) J
our formula may then be written

f

where
/1/z

. . . (k) is the number of elements of 7r(flt /2 , )

belonging to the class f. This number can be evaluated in an

elementary manner.

Distribution of Permutations in Classes.

Any permutation 5 is a product of cycles, no two of which

contain a common numeral. The 5- term cycle (1 3 7 2 4) is

a permutation which sends 1 into 3, 3 into 7, 7 into 2, 2 into 4,

and 4 into 1 again ; writing these 5 numerals at equidistant
intervals on the rim of a wheel, this permutation may be con-

sidered as the rotation of the wheel about the angle 2n 5. Given

any permutation, for example

123456789
I I I I I ; I I I (9.5)

347 198265,
the cycles may be separated out by first determining the number

(3) into which 1 is transformed, then the number (7) into which
3 is transformed, etc., until a number is obtained which has

already appeared in the cycle ;
this number can, of course,

only be 1. After separating out the first cycle the remaining
numbers can be handled in the same way, and the process may
be continued until the desired result is obtained. The per-
mutation (9.5) is, in terms of its 3 cycles,

(1 3 7 2 4) (5 9) (6 8). (9.6)

The reduction of an arbitrary permutation into its cycles is

obviously unique. This way of writing the permutation enables

us to tell at a glance whether two given permutations are con-

jugate in nf or not, for an element conjugate to (9.6) is obtained

by replacing the numbers 1, 2, 3, 4, by the same numbers
in any order. The class f to which an element 5 belongs is thus
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determined entirely by the number of cycles and the number
of integers they contain

;
in particular, any permutation s and

its inverse s~ l
belong to the same class. We denote the class

f whose elements s consist of i
l cycles with one numeral, i 2 with

two, z' 3 with three, by (i 1 z' 2 z' 3 )
and write x(f)

=
x( z i *2

' *

*) *>

naturally

H i + 2z 2 +3z 3 + ' =/. (9.7)

The number K of classes is the number of solutions of (9.7) with

non-negative integers z\, z' 2 ,
i'3> .

The number of elements in the class f (vV 3
' '

")
IS

To show this we write the f integers 1, 2,
-

, / in any of the

/! possible orders and divide off each of the first i l integers by
parentheses, then divide off the next 2z' 2 in groups of 2, the next

3z' 3 in groups of 3, . The symbol so obtained is to be inter-

preted as the expression of permutation in terms of its cycles.

Each of the/! possible arrangements so obtained leads to a definite

element 5 of the class f, and all such elements must be included.

We must now investigate how often the same s occurs among these

/!. Now the 5-term cycle (1372 4) can also be read as (3 7 2 4 1),

(72413), etc. : the particular integer with which we begin is

immaterial
;

such a cycle will occur five times. Hence those

I
1

! 2 1
* 3 1

3 arrangements which differ only by a cyclic per-
mutation of the numerals in each cycle are all associated with
the same element s. Furthermore, the i

l
1-term cycles may be

written down in any order, the z' 2 2- term ones in any order, etc.,

and these i^.i^l arrangements all lead to the same element s.

Hence each element occurs exactly l'i ij.%* / 2 ! times, and the

total number of elements in the class is accordingly given by
(9.8).

We must also determine the number of elements of f which
are contained in the sub-group 7r(/lf /2 , ).

For this purpose
we divide the numbers from 1 to f in sections of lengths fly

/2 ,
and consider only those permutations s which permute

the numbers of the first section among themselves, the numbers
of the second among themselves, etc. On dividing s into cycles
as in the above some of the cycles will be contained in the first

section, i.e. will consist only of numerals belonging to the first

section, some will be contained in the second section, etc., and
no cycle will consist of numerals belonging to different sections.

Denoting the number of 1-term cycles contained in the first
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section by tu ,
the number of 2-term cycles in this section by

z 12 , etc., whence necessarily

3z 13

the number of permutations of 1, 2, , /x satisfying this

requirement is, by (9.8),

in! ii2!
* * ' I 1" 2'"

'
v '

Proceeding analogously for the 2nd
,
3rd

, etc., sections, the number
of permutations in ^(fifz

* *

') satisfying all our requirements is

given by the product of all numbers of the form (9.9) for the

various sections. But such an element is a member of the

class I = (ifa )
if and only if

=
*!, Zi.. = f2,

' '

; (9.10)
a a

hence

(i)

where the sum is extended over the various solutions of equations

(9.10) and

2> i
=

/i, 27" * =
/2,

' ' '

* ^

The inner sum in (9.4) is accordingly

the only restriction on the sum being the conditions (9.10). Let

al
=

j + E 2 + + n ,

a2
=

el + el + + s;,

Our results can be expressed entirely in terms of these sums of

powers, for by the multinomial theorem

(i)

(t) a
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where the variables i*i,iA2 , ,
over which the sum is extended,

are subject to the restrictions (9.10). We thus finally obtain

the simple formula

X(e,, s s>
i z \ (9.11)

We have so far made use only of the elementary connection

between the groups TT and C. If we now introduce the assumption
that the number field over which our algebras are defined is

algebraically closed, and is in particular the continuum of all

complex numbers, the primitive characters of the finite group TT

have the orthogonality properties

Furthermore, the number of primitive characters is equal to

the number K of classes. The above relations assert that the

matrix of the x(f), where x runs through the entire set of primitive
characters and ! all classes, has as its reciprocal the matrix

1

Hence we also have

= for r * I.

This is, in fact, merely an alternative form of the completeness
theorem. In dealing with the symmetric permutation group TT/

I""
1

I and the order is h = /!.

On multiplying the expression (9.11) for the primitive
character X by x(h*2

* *

*)
and summing over all the primitive

characters x of ^Y, we obtain, with the aid of the relations

derived above, the important formula

(9.12)

where x and X are the characters of corresponding irreducible

representations of 777 and cn .
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10. Direct Product. Sub-groups

Programme.
If two atoms or ions with fly /2 electrons, respectively, come

together to form a molecule we may to a first approximation
neglect the interaction between the two atoms so long as the

distance between them is relatively large. In this approximation
the two kinds of electrons are dynamically different, for the

electrons of each atom are influenced only by the nucleus and
the remaining electrons of the same atom. The symmetry is

therefore described by the sub-group TT' of the symmetric group
TT 777 of / /! -f A things in which the first /x and the last /2

things are permuted among themselves. A similar situation

arises when three or more atoms come together to form a

molecule. These considerations immediately suggest the follow-

ing problems.
I. The theory developed in 2-4 is to be extended to the

case in which the symmetric permutation group is replaced

by any permutation group TT' . Naturally the definition of a

symmetric transformation in tensor space is to be adapted to

the new situation : we require only that the coefficients

a(i l if ;
k 1 kf )

of (1.2) remain unchanged under an

arbitrary permutation belonging to the group TT' of the sub-indices

1, 2, , /. We say that these transformations are symmetric
with respect to TT'

; they constitute an algebra Z' which is

obviously more extensive than 27. This question is immediately
settled by the remark that all our previous deductions are valid

for an arbitrary permutation group TT''. Here TT' is considered as

an independent group rather than as a sub-group of the sym-
metric group.

II. Let the set of integers from 1 to / be divided into two
or more sub-sets. We consider, as an example, the case of

two sub-sets : the
"
red

"
numerals from 1 to/! and the

"
green

"

ones from 1 to/2 ; fi + /2
=

/. Let TT' consist of all permutations
of the red among themselves and the green among themselves.

Hence a permutation s' = (s^ s2) of TT' consists of a permutation
s
l of the/! red numerals and a permutation s2 f the green ones

;

TT' is the direct product TT
I X 7T2 of the symmetric group TT I of f l

and 7T2 of /2 things. Or conversely, this direct product the

abstract definition of which has nothing to do with the group
of permutations of / things may be considered as a sub-group
TT' of the symmetric group of / /i + A things on arranging
the sets of numerals, on which permutations of TT

I}
7r2 act, one

after the other to form a single set. But here we are interested

in the following problem (which can be proposed for arbitrary
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-finite groups) : to discuss the properties of a group TTI X 7r2

which is the direct product of two finite groups TT
I) rr2 .

III. In order to discuss the structure of molecules we must

eventually take into account the interaction between the various

atoms or ions contained in the molecule. This means that we
must finally return from the sub-group TT' to the full symmetric

group TT, so we must examine the relations existing between the

group TT and its sub-group TT'. Here again the problem is not

restricted to permutation groups.

Direct Product.

Let TT
I?

7r 2 be two finite groups of orders /lt /2 respectively.
The elements of the direct product TT = TT I X 7r2 are the pairs

(s l} s 2] consisting of an element s l of TTI and an element s 2 of

7r2 . An element of the algebra of TT is accordingly a function

x
(
s

ii
S2l> an<J it follows from this that the algebra of TT is the

product of the algebras (TT^ and (7r2 )
:

(7T2)

in the sense of the X -multiplication of vector spaces introduced

in II, 10. An element x l :x l (s l )
of

(TTJ) and an element x2 :

X 2(s 2]
of

(7T 2) yield the element x = x l X x 2 of
(TT), whose com-

ponents are given by

Indeed, given any two algebras p l , p 2 ,
their direct product

p = p l X p 2 can be constructed and multiplication in p defined by

(a l X a 2)(b l X b 2)
= (a^ X a 2b 2)

whether they are group algebras or not.

If pa is a linear sub-space of t ~
p^ (a

=-=
1, 2), an element

x : x(s ly
S 2]

of
(TT)

is in p = p x X p 2 if and only if it belongs to

)p 1 when considered as a function of s^ holding s2 fixed, and to

J) 2 when s l is held fixed
; indeed, any element of this kind can

be expressed as a linear combination of products of the form
a l X a 2j where a l is in ^ and a 2 in p 2 . If p4a ~ 1 2) is an

invariant sub-space of tA , generated by the idempotent element

and the representation space of the representation ^ of pa
induced in pa by the regular representation, then p is also

invariant, has as generating idempotent element e e l X e2

and is the substratum of the representation l) l X i) 2 of p. It is

evident that the equivalences ^ t
~

pi, p 2
~ ^2 imply the equi-

valence pi X p 2
~ pi X pi-

Suppose the two pa considered above are also irreducible
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with respect to their algebras pa ;
the question then arises as

to whether $ l X ^ 2 is irreducible (with respect to p) and whether

p = pj x p 2 *s equivalent to p' pi X p$> (pi irreducible) 0n/y

if Pi ^ Pi* p2 ~ p2- P and P' are inequivalent if #<?' =
identically in x, i.e. if the sub-space consisting of elements of

character (e, e') contains only the element
;

here e = e X 2 ,

e' = e( X e'2 . Now the formula

(*i X *a)(*, X *2)(4 X 4) = *i*i*i X

shows immediately that the sub-space (e, e') is the direct product
of the two sub-spaces (e ly e() and (e2 , 4), and can consist merely
of only if one of these two sub-spaces consists merely of 0,

i.e. only if ^ is inequivalent to $( or
J) 2 is inequivalent to ^2'-

Our second question is thus answered in the affirmative regard-
less of the nature of the field over which the algebras are defined.

The first question is answered in the affirmative in III, 9,

for the only case of physical interest, i.e. that in which the field

is algebraically closed. If we are more interested in the re-

duction of the algebra than in the representations we can argue
as follows. The algebra of elements of character (e, e) is the

direct product of the field (division algebra)
(Pl of elements of

character (e lt e^ in pl and the field 2 of character (e2 ,
e z]

in p 2 .

Assuming the original field is algebraically closed, all elements

of a are multiples of ea and consequently all elements of p
with character

(e, e) are multiples of e. This proves the irre-

ducibility of
\) l X J) 2 . If, however, the original field over which

the algebras are defined is not algebraically closed our assertion

is correct only if the direct product (Pl X $2 of the two fields

is again a field, and this is by no means always the case. But
in any case the question concerning the nature of the direct

product of algebras is, as in the question concerning the structure

of an algebra in 7, reduced to the analogous problem for fields

(division algebras).

Again taking the fundamental field to be the continuum of

all complex numbers, the complete reduction

into irreducible invariant sub-spaces a has as a consequence,
in accordance with the above, the reduction of t = tx X t2 into

invariant irreducible sub-spaces J)^ X ffi.

Sub-groups.

Let it
9

be a sub-group of the given finite group TT. An element

x' of the algebra t' =
/>'
=

(TT')
of TT' consists of components #'($')
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associated with the various elements s' of TT'. However, such

an element can, and in the following will, at the same time be
considered as an element of the algebra p = (TT) ;

we need only
to define the components x'(s) associated with elements s of TT

which are not contained in TT' as zero. This disturbs in no way
the addition and multiplication of elements of

(77') with each
other or with arbitrary numbers of the field. An element x of

(TT)

"
belongs

"
to TT' or

"
lies

"
in (TT')

if and only if all com-

ponents x(s) associated with elements s of the group that are

not in TT' vanish.

An irreducible invariant sub-space
'

of t' is generated by a

primitive idempotent element e' and is the substratum of a

representation f)'
of TT induced in p' by the regular representation.

On reducing the modulus 1 of TT' into independent primitive

idempotent elements

1 = JX + -

(io.i)
i = l

a certain number, say g', of elements
e\

will appear which are

equivalent to e
;
the sub-spaces p t

'

which they generate are all

equivalent to p' and the regular representation of TT' contains
f)'

g times. Equivalent summands are added together into

such partial sums. Considered as an element of the total

algebra p = (TT)
e is, however, in general reducible into inde-

pendent primitive idempotent elements :

e' = Ze* + (10.2)
A-l

Here again equivalent summands on the right are collected

together into partial sums
;

let the e* in the first such partial
sum generate the representation fy

of TT we shall in the following
be interested only in these. Let the sub-space p with the

generating unit e be a representative of the sub-spaces p rt gener-
ated by the e*. The elements of (77) of the form xe' constitute

an invariant sub-space <p'> which is the substratum of a re-

presentation \l)'> of TT induced in p' by the regular representation
of TT. Our formula asserts that cm reducing <J)'> into its irre-

ducible constituents
I)
occurs exactly b times.

In order to obtain a simple characterization of the elements

of <p'> we divide the elements of the group TT into sets of group
elements which are equivalent mod. TT'

;
the uih such class

consists of the group elements aus', where s' runs through the

sub-group TT'. An element x of the algebra (TT)
has as components

%(<**$'} !
the numbers x(aus'} may, for fixed u, be considered as

the components of an element x'u of the algebra (TT'),
so that x
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may be considered as the set of elements x'u belonging to the

algebra (TT').
The formula y = xe' then becomes y'u

= x'ue' in

(TT')
: hence x belongs to <jp'> if and only if all the partial

elements x'u lie in '. The correspondence

x -> y == ax

may then be written

y(aus') = Z Z a(aus't'~^
l

}x(avt'}
v t' in n'

or

where a'uv is the element of the algebra (TT') defined by

aw (s

r

)
= a(ous'a~

l

).

The representation <f)'> may therefore be constructed as follows :

first associate with the element a of
(TT)

the matrix \\auv \\,
the

coefficients of which are elements of the algebra (TT') instead of

numbers, and then replace each auv by the matrix A'uv associated

with it in the representation f)'
of TT' .

As we have seen in the earlier part of the present chapter,
the representations are obtained with the aid of a double Peirce

decomposition ;
we therefore consider the elements x = e'xe' of

character (e' 9 e'). The idempotent elements *, appearing
in (10.2) are of this character, and such an element x may be

expressed in terms of its components

x = Z W*p + ' '

(10.3)
,/9
= l

We now repeat the analysis of 7 for our more restricted set

of elements: let F^ be a one-to-one similarity correspondence
of p on p and let the element into which ea is sent by the corre-

spondence F^r^
1
be denoted by eap*. If, as we now assume,

the field over which the algebras are defined is algebraically
closed eaxeft is necessarily a multiple x

aft
of eap. We then obtain

instead of (10.3) the reduction

x = Zxpeaft + -

, (10.4)

(where the x
Mft

are numbers) and the representations

* Here, as in 7, but in contrast with our usual notation, the product of
two or more correspondences JT is to be read from left to right.
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Now if in particular x is in
(TT') then x e'xe' is a numerical

multiple of (10.2), and the matrix \\x^\\ associated with such an
element is a multiple of the unit matrix. The degree of the

secular equation, the solutions of which determine the character-

istic numbers, is thus decreased from g to b for an element x
of character (e

f

, e'}. We now proceed to examine the cause of

this.

Let F^ 1 be a one-to-one similar correspondence of p' on p<

(z
=

1, 2, , g'), and let the element into which it sends e'

be b\ . On considering an arbitrary element x of the algebra
of TT as the set x'u ,

we see that the correspondence

xe' -> xb\

is a one-to-one reciprocal and similar mapping of <p'> on <p/> :

the projection F[ of ^ on p gives rise to such a projection of

<J)/> on <'>. This projection associates with the reduction

of <'> into irreducible invariant sub-spaces a reduction of the

same kind of the sub-space <pt'> ; corresponding to equation

(10.2) we obtain the equations

e\
= 2Xi + ' '

(10*5)
a= l

On combining (10.1) and (10.5) we obtain a reduction of the

modulus 1 into independent primitive idempotent elements of

(TT).
Now consider the partial sums e\

of 1 and their reductions
i

(10.5) as written one above the other. Each row is then as-

sociated with a definite representation t)'
of TT' and each column

on the right-hand side, the terms of which are sums of the form
e&i, is associated with a definite representation t)

of TT. We
i *

now collect together all the summands ej occurring in the first

column on the right, i.e. all those elements ej which are equivalent
to e. The set of indices J is then broken up into sub-sets, each

of which is associated with one of the inequivalent irreducible

representations f)',
of TT'

;
the first of these sub-sets, which is

associated with
I)',

consists of the bg' double indices az.

Let the similarity projection J
1^" 1 of p^ on $'k send e\

into
e\. k . If x' is an element of

(TT') the equation

x' = JX x'ek +
i,*

yields the reduction

* + - ' ' 0-6
)

.*
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with numerical coefficients x'
llcJ

and x' ->
\\xik \\

is the representa-

tion
t)'. (The partial sums should preferably be written one

above the other rather than horizontally.) TV may be con-

sidered as a similarity transformation of <p;> on <p'> and

therefore contains a transformation of the same type of pat
- on

$a ; Fira then provides us with a similarity correspondence
of p t

on
J).

Let Fj be a fixed one-to-one similarity correspond-
ence of pj on p and let the similarity correspondence FjF^

1
of

tyj
n px send ej into ,/ ; #. We may take the correspondence

r'iFgi as Fj for the index / = az, and similarly for the remaining
sub-sets. On applying the correspondence F^F^

1 = F-FA(r^Fa)~
l

to equation (10.5) we find

=
*

C=l

The equation

(10.8)
J,K J, K

then determines the representations

*)
: x -> |k,jdl ;

-
.

By (10.6) and (10.7) the matrix associated with an element x

of
(77')

is

X
ai; 0k

==
*0
x

ik>
XJK ~

where the two indices J and K belong to different sub-sets.

But this means that on restricting TT to n' the representation J)

is reducible into the irreducible representations !)',
of TT',

fy' appearing exactly b times. We have thus obtained a con-

structive proof of the theorem 9
:

First Reciprocity Theorem (for arbitrary groups). If <!)'>

contains the representation 1) of TT exactly b times, then on restrict-

ing the group TT to TT', f)
contains the representation I)' of TT' exactly

b times.

If the sub-group TT' consists merely of the unit element 1

this theorem reduces to our previous result : the number of

times an irreducible representation appears in the regular

representation is equal to its dimensionality. Both the com-

plete theorem and this special case depend on the assumption
that the field over which the algebra is defined is algebraically
closed.

Connection with Symmetry Classes of Tensors.

We apply the results of our investigation III to the symmetric
group TT and make use of the correlation described in I above for
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fr as well as for its sub-group TT'. An irreducible sub-space p
of

(TT)
determines a symmetry class ty

=
$p of tensors

;
let the

corresponding representations of TT and the linear group c be

i)
and

, respectively. An irreducible invariant sub-space ))'
of

(TT')
determines a symmetry class ^' of tensors which is invariant

with respect to the more extensive algebra
'

of all transforma-

tions which are symmetric with respect to TT'
;

as such *$' is

irreducible. If e' is the generating unit of p', ty' consists of all

tensors of the form e'F
;

but this is equivalent to saying that

the symmetry element F of (TT) belongs to <p'>. Hence the

reduction of ^' into irreducible invariant sub-spaces with respect
to the more restricted algebra S parallels the reduction of <>').

Let f)'
be that representation of TT' induced in p' by the regular

representation of TT' and '

that representation of c whose sub-

stratum consists of all tensors in the symmetry class *$'. Hence
our general theorem or rather its converse, the truth of which
follows immediately from the theorem itself allows us to state

the

Second Reciprocity Theorem (applicable only to permutation

groups) If the irreducible representation t) of TT contains the

irreducible representation I)' of TT' exactly b times when considered

as a representation of the sub-group TT'
,
then conversely the repre-

sentation
'

of C contains the representation exactly b times.

Finally we take TT' as TT I X 7r2 as in step II above, p' can
then always be taken in the form p t x p 2 ,

an^ the irreducible

invariant sub-space p* of (TTA )
determines a symmetry class tya

of tensors of order fa (a
=

1, 2). Denote the corresponding

representations of TT^ and c by fy, and a . The *$' associated

with p'
= p! X 2 consists of all tensors of order / = /x + /2

which satisfy the symmetry conditions of ^ with respect to

their first /t indices and the symmetry conditions of ^ 2 with

respect to the last /2 ;
i.e. ^' = ^ X ^5 2 . Our theorem now

becomes :

Third Reciprocity Theorem (for permutation groups}. If the

irreducible representation fy of TT contains, on restricting TT to the

sub-group TT' = TT I X 7r2 ,
the representation f)j X t) 2 of TT' exactly

b times (fy, an irreducible representation of rra ),
then conversely the

representation x X Jp 2 of C contains the representation exactly b

times.

11. Perturbation Theory for the Construction of

Molecules

We return to the investigation of the physical system If

consisting of / electrons or equivalent individuals /. As long
as we disregard the interaction between the individuals we obtain,
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among others, /1-fold energy levels E of the type (8.4). We
consider in particular the case in which the t are different

simple levels of the individual /. In order to follow the resolu-

tion of
,
due to the mutual interactions of the electrons, to

the approximation which characterizes the perturbation theory,
we must first determine the elements a of the algebra of TT, the

components a(s) of which are the exchange energies, and trans-

form the matrices corresponding to a in the various irreducible

representations of TT into diagonal form by an appropriate

change of co-ordinates ( 8). We now assume that the most

important of the exchange energies a(s) are those belonging to

the permutations s of a certain sub-group TT' of TT
;

all others

shall be small in comparison with them (" quantities of 2nd

order "). Our procedure is divided into two steps, corresponding
to the investigation of sub-groups carried out in the preceding
section. Let a' denote that element of the algebra (TT'}

which is

defined by

a'(s)
=

a(s) or

according as is an element of the sub-group TT or not, and let

the matrices associated with a' in the irreducible representations

I)'
of TT' be referred to principal axes

;
then

ela'e'k
= (i ^ k), e.a'e,

- W
i e\.

The characteristic numbers W\ are the energy levels on neglecting

perturbations of 2nd order
;
we assume they are all different.

In order to examine the further resolution of such a term

W = Wi under the influence of the 2nd order perturbation we

need, in accordance with the perturbation theory, to consider

only that part
a* = e'ae'

of a which is of character (e' t e'), where we have written e' in

place of
e\.

This term yields b terms Wa belonging to the

symmetry class x associated with the irreducible representation

f)
of TT, the values of which are the characteristic numbers of

the matrix
\\a^\\

associated with the element a* = e'ae' as in

(10.4'). All the algebraic elements appearing in these con-

siderations are real and the corresponding matrices are con-

sequently Hermitian.

We apply the procedure to the process by which molecules

are constructed from their constituent atoms. 10 We consider

as an example two atoms joining to form a molecule, the one

containing /x and the other /2 electrons
; / = fl + /2 . We

consider the two nuclei as held fixed at a distance d apart, which
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is large compared with the linear dimensions of the atoms, and

attempt to determine their interaction energy as a function of d.

The sub-group TT' = TTI X 7r2 consists of all permutations which

send no electron of one atom over into the other
;
we have seen

in 10 that we may then take the primitive idempotent elements

e'.
= e' of the algebra (n

f

)
in the form e l X 2 ,

where e^ e2 are

in
(TT-J), (TT^ respectively. On neglecting the interaction between

the electrons of the one and the electrons of the other atom we
obtain an energy term W which belongs to definite symmetry
states of both atoms, e' generates a sub-space *$'

= ^ X $ 2

(of the tensor space W) which is invariant under all symmetric
transformations

;
that the state of the molecule is described

by a tensor of this sub-space ty means that the state of the first

atom is in ^ and that of the second in ^J 2 . Hence on reducing

^' in parallel with the reduction of <p'> into irreducible in-

variant sub-spaces :

there occur b sub-spaces ?P
(a) which are equivalent to one another

and which belong to a certain representation of TT or to a certain

symmetry class of terms of the total system. The procedure
sketched in the preceding paragraph thus leads to b terms which

(1) arise, due to the perturbation, from the given unperturbed
term (8.4) and (2) which belong to certain given symmetry
states xi, X2 and X f the two atoms and the molecule. This

reduction of the total system space W into sub-spaces, each of

which corresponds to a definite symmetry state of each of the

atoms taken separately and of the molecule, naturally is not

bound up with the approximate calculation of levels with the

aid of perturbation theory ;
the connection between the two

appears only on taking the above condition (1) into account

the very essence of which implies the assumption of small per-
turbations. This somewhat sketchy account of the situation

arising from an unperturbed term of the type (8.4), in which
the energies t

- of the individual / are non-degenerate, can readily
be extended to cover other more complicated types of unper-
turbed terms. These other cases are of course of much greater

physical interest, for we have seen in Chapter IV that all atomic

energy levels, except 5-terms, are necessarily degenerate.
11

The fact that the total system may be in any one of several

symmetry states *$, corresponding to different energy levels

(i.e. binding energies), when the symmetry states of the com-

ponent atoms are given is of greatest importance. We shall

later show that these possibilities, finite in number, coincide with
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those predicted by the empirical theory of the valence bond, and
that consequently the symmetry state of an atom is that which
chemists call its valence state. The situation thus arising cannot

be described adequately in terms of classical models e.g. the

fact that the two H atoms constituting an H 2 molecule can be-

have in such a way that the state of the molecule may lie in

either the space of symmetric or anti-symmetric tensors of

order 2
; only the first case can lead to an attraction which will

bind the atoms together the second always results in a re-

pulsion.
12 The binding energy between two ions of total residual

charges e ly e2 is naturally due mainly to the Coulomb potential

e^e^d (*'
ionic binding

"
or

"
polar bond "), but the corresponding

energy for two neutral atoms is due for the most part to the

interaction of the
4t

exchange energies
"

a(s) of the electrons of

the two atoms (" atomic binding
"

or
"
non-polar bond ").

This quantum-mechanical solution of the puzzle offered by the

non-polar valence bond was first given by F. London and
W. Heitler.

The following points are to be taken into consideration in

applying the theory of perturbations to the actual evaluations.

On neglecting the interaction between the various electrons

each is subject only to the attraction of the two nuclei
;
we

should therefore perhaps begin with the characteristic numbers
E

t and the corresponding characteristic functions ifj^xyz) of

this one-electron problem. The first approximation should then

be obtained by taking into account the repulsions between the

electrons of each of the atoms separately, thus introducing a

dynamical difference between the two kinds of electrons. This

procedure is naturally significant only so long as the distance d

between the atoms is large in comparison with their linear

dimensions a. But then it is also reasonable to take as our
th

approximation that in which each of the electrons is subject

only to the attraction of its own nucleus (plus the closed shell

of electrons which are not to be taken into explicit account in

the calculations). Let this one-electron problem for the first

atom have the characteristic values E i and characteristic func-

tions
</*,,

and let the corresponding quantities for the second

atom be ^, ^. The fact that the
t
- and the fa together

cannot constitute an orthogonal system indeed, they are not

even linearly independent, for the t alone constitute a complete

orthogonal system causes some difficulty. But if we break off

the series of quantum states at a finite n which can be chosen

higher the larger the value of d/a under consideration the

finite set
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of functions
i/r

constitute an almost orthogonal system ;
the

fundamental metric form G
,
the coefficients of which are the

scalar products

(where i and k run through the primed as well as the un-primed
indices), differs but little from the unit form. Indeed, an integral
of the form (t/^, r)

is of order of magnitude e~dla
. To show

this we note that if the two centres of force are nuclei or closed

cores "with
"
unit

"
residual charge, the normal states of the

atoms are given by

where r and r
r

are the distances to the two cores. The integrand
in

is everywhere ^ e dfa
. This integral can readily be exactly

evaluated on introducing bi-polar co-ordinates (r, r', <f>] ;
the

volume element is then

dV - ^rr'drdr'
a

and the range of integration is defined by

r + r'^d, - d < r r ^ d.

On introducing

r -f- r
r

r r'
,

d
___,,, -

7
- = P , a

= A

we obtain
00 +1

1 - 1

For the /-electron problem we therefore start with the

functions

<A(h,
' '

', if)
=
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as approximations to the characteristic functions
;

in this

product the co-ordinates are those of the / electrons and i runs

through the values i lt i2 , , z/, each of which is one of the primed
or un-primed indices between 1' and n' or 1 and n. The funda-

mental metric form G = G X GQ X X GQ has as components
the scalar products of ^(ill

i2 if )
with ^(k^ k 2 kf )

and
the components of the energy //, the potential part of which is

obtained by adding together the potential energies resulting
from the attractions and repulsions of the various electrons and
the two cores, are the scalar products of

iff(i l
if)

with the

vector H$(k } &/) into which 0(&j &/) is sent by the

operator H. We consider the resolution of the unperturbed
term

=(! + + E
fl] + (Er +

The components

G(i l ;,; V '

*/) and H(i, i, ; k,
-

*,), (11.1)

in which the indices z, k arc permutations s, /, respectively, of

1,
'

', A, 1', ', A', are of the form G(sr
l
)
and //(sr

1

).

'

We
introduce the (real) elements G and H with components G(s)
and //(s). G and H are next replaced by G' and //' with com-

ponents G(s) and //(5) if s is in TT' = ^ X 7r 2) and otherwise
;

the justification for this lies in the fact that the components
associated with an s which is not in IT' are very small they are

of relative order e~2dla
. G' is in fact the modulus, whereas G

is not
;

the procedure employed previously must therefore be

modified in the following purely formal respect. On repeating
the reasoning, keeping in mind the fact that G is no longer the

modulus, we find as the secular equation for the determination

of the b terms A = Wa

| AC,,
-

//., |

=
0, (11.2)

in which

in terms of the notation employed in the preceding section.

This procedure is open to the criticism that whereas the

second order perturbations between the electrons of the same
atom are neglected, the interaction between the two atoms, which
is considered to be of second order, is taken into account. The
results are therefore inapplicable to the limit d/a -> oo and can

at most be applied successfully in cases in which d/a is consider-
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ably larger than 1 but not too large. On the other hand, we
could begin by assuming that the solution of the quantum
problem for the individual atoms is already known. Let the

function $ l of the co-ordinates of the first fl electrons be a

characteristic function of the first atom corresponding to the

energy term E 1 (so normalized that the integral of $i*(ii is unity) ;

it will belong to a certain simple symmetry state of the first

atom, i.e. there exists a certain real primitive idempotent element

ej of (TTJ) such that e^^ = ^. Similarly, let
if/ 2 be a character-

istic function of the second atom for the term /?2 , having a

corresponding property 2 </f2 1/4. Neglecting the interaction

between the atoms, = ^ .

</f2 is a characteristic function of

the molecule consisting of the two atoms and having the energy
E = E l + E2 . e' = ^i X e 2 is a primitive idempotent element

of the algebra of 77' = n l X 7T2 and i/j
has the property

The functions
s</r,

which are obtained from
i/r by the totality of

/! permutations 5 of its arguments, span a linear function space

(91) of a finite number of dimensions in which the
sifi

are natur-

ally neither linearly independent nor mutually orthogonal.
The theory of perturbations requires us to find those functions

(f>
of (9?) which are such that the orthogonal projection of H<f>

on (9t) is proportional to 6 itself
;

the factors of proportionality
are then the values of the displaced terms, to a first approxima-
tion. We must therefore evaluate the integrals G(s, /), //(s, /)

of

t$-sj* and t$-H(s*l/)

and solve the secular equation

\XG(s t t)
-

H(s, t)\
~ 0.

G and // depend only on r ls :*

G(s, /)
= G(r*s), H(s, t)

- H(r l

s).

This is proved by the fact that the integral of $ <f>
is unchanged

on replacing /r, <f> by r</f, r</> (r an arbitrary permutation) ; H(sifi)

is equal to sPIifj because of the symmetry of the operator H.
Let Q and H again be the elements of (n) with components
G(s), H(s). They satisfy the equations

e'Ge' = G, e7/e' - H
* On comparing this with (11.1) it is to be remembered that there the

permutations s and / operate on the indices and not on the arguments ; hence
the elements (11.1) are. in our present notation,

G(t~
l

, s~ l
)

and H(t~
l

t
s~ l

).
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and are therefore of character (e

1

', e'}. Indeed, we have, for

example,

^ = e'(r-
1
} nf>, whence H(s^) = Ze'(r~

l
) H(sr^),

r r

and on multiplying this latter by $ and integrating we find

H(s) = Ze'(r~i}H(sr) or H = He'.
r

It then follows that also H e'H whence, since e' is real,

H = e'tt and consequently H = e'He' as asserted.

The only non-vanishing elements of the matrix ||//j^||,

which corresponds to the element H in the representation I),

are (in the notation of 10 with
e[
=

e'} those contained in the

square sub-matrix of length b in which the row and column
indices J and K are of the form ocl. We are thus led directly
to the secular equation

of b ih
degree. (The most natural method of solving this equation

consists in finding that linear transformation which sends the

Hermitian form with coefficients G^ into the unit form and at

the same time reduces \\Haft \\
to diagonal form.) SH^ is then

the trace of the matrix belonging to H in the representation I),

or

If in particular 6=1 the above symmetry system of the

molecule contains but a single term arising from the unperturbed
term E

;
its value is, in accordance with the equation derived

above, given by

( >

ZG(s)x(s)
1 + Z'G(s)X(s)

The accent on the right-hand side indicates that these sums are

to be extended over only those permutations s which do not

belong to TT'. This formula (11.3) is due to F. London. 13 It

will be shown later that in the case of diatomic molecules b

is always 1
;
we must expect, however, to find higher values of

b in dealing with more complex molecules. The real difficulty

from the physical standpoint naturally consists in getting in-

formation concerning the exchange energies H(s). It is to be
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noted, however, that we need only to concern ourselves with the

sums

over the various classes, for since x(s)
IS a class function all

summands in (11.3) for elements in the same class I may be

added together to give the above coefficients multiplied by x(I)-

Without doubt these investigations, which are as yet in their

infancy, are of fundamental importance for theoretical chemistry ;

the non-polar bond is due to the exchange energies. Heisenberg
has given an explanation of ferro-magnetism with the aid of

these same principles.
14

12. The Symmetry Problem of Quantum Theory

On taking the spin into account the components of a vector

x(u), which represents the state of a single electron, has two
indices t and i

;
the first of these refers to the spin and runs from

1 to v, while the second refers to the translation and runs from
1 to n. Actually v = 2 and n = oo (as long as we do not restrict

ourselves to the consideration of quantum states with fixed

energy). Our vector space 9ft is accordingly 9tvn = 9ftv X 9ft n .

The state of a system consisting of / electrons is now to be

represented by a tensor of order / in this space : V(^\i\^ C2*2

, ^if) a
"
double tensor

"
which stands, so to speak, with

one foot (the Greek indices) in the space JRV and the other (the
Latin indices) in iR n . This tensor space is completely reducible,
with respect to the algebra Zvn of all symmetric transformations

of the index pairs (u), into irreducible invariant sub-spaces,
each of which is generated by '.n idempotcnt symmetry operator.
The Pauli exclusion principle states that only one of these sub-

spaces tyvn is physically realized
;

it automatically abolishes the

physically absurd existence of multiplicities which cannot be

resolved and at the same time denies the existence of absolutely

non-combining systems of terms. Furthermore, according to

Pauli this ^$, n is the space {9UV n} of all anti-symmetric double

tensors.

On ignoring the spin perturbation, tyvn is to be reduced as far

as possible into sub-spaces ^5 which are invariant with respect
to the special symmetric transformations of the form

(*)

which do not depend on the Greek indices at all
;
these constitute

our old algebra 27 = 2Jn . This transition from 2vn to Sn is to
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be accomplished in two steps. We first ignore the interaction

between spin and translation, but allow the translations to

interact among themselves in an arbitrary manner and similarly

the spins among themselves
;
we must then consider only the

symmetric transformations of the form

y(h
'

i/ 5 *i
'

ic,) c(ii if ; k, kf). (12.2)

These transformations do not constitute an algebra themselves,
but they belong to their

"
enveloping

"
algebra Sv X n which

consists of all transformations whose coefficients

are unaltered on subjecting the two rows 4 t/ ;
K

I
Kf

of Greek indices to the same arbitrary permutation a and the

two rows of Latin indices to the same arbitrary permutation s.

The second step then consists in letting y in (12.2) be the identity.
The first step thus consists merely in making the permutation
of the Greek indices independent of the permutation of the Latin

indices, and the second in restricting the first of these permuta-
tions to the identity.

In the first place, then, we introduce the elementary sym-
metry operator a X s which, on applying it to the double tensor

F(L II I ifif), subjects the Greek indices to the permutation
a and the Latin to the permutation s. The general symmetry
operator is then an arbitrary linear combination

a 2>(tf, s)(a x s)
<T, 8

of these elementary ones
;
we have thus to deal with the algebra

p X p of elements *, the components #(cr, s) of which are functions

both of whose arguments run through the elements of the group TT.

We denote the element with components F(cr, s)
=

(a X s)F
by F

;
the equation F' = aF (F

f

the double tensor obtained
from F by the operator a) is equivalent to F r = F 3. The

group TT X TT of elements a X s contains TT itself as the sub-group
consisting of elements s X s. So far as the first step is con-

cerned, our problem amounts to the following : Let l(s) be the

components of a primitive idempotent element of the algebra
I = p = (77) ;

We set

l=l(s)(s X s)
8

and study the elements of the form xl in p X p. They con-

stitute an invariant sub-space (t X t)j which is to be reduced
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into its irreducible invariant constituents
;

in Pauli's case we
have in particular

The procedure which it seems natural to follow is first of

all to express the modulus 1 of p in any two ways as the sum of

primitive independent idempotent elements :

1 = Zel 1 = 2>,. (12.3)
;

An arbitrary element # of the algebra of p x p is reduced into

independent constituents in accordance with the equation

x = 2>(*; X e,}
= Zx tj . (12.4)

J ,;

Now we know from 10, II, that the elements of the form %
ij

constitute an irreducible invariant sub-space p, ;
-

;
consider

*/= 2>,,/
.;

in this light. The projection % -> y = xl sends p, y over into

a certain invariant sub-space (p l; )
of (r X t) t

. Since those

x of
J) ; ,j

for which xl = constitute an invariant sub-space of

^,j we have only the two typical possibilities : either (p i;-)
=

or this projection x -> xl maps p, ;
- in a one-to-one and similar

manner on (p,/). The sum

(r x r),
= r(Pu), (12.5)

arranged in some particular order, is such that each term can,
in virtue of its irreducibility, only either be contained in the

sum of the preceding terms or be independent of this sum. On
retaining only those terms arising from this second possibility,

(t X t)j is completely reduced into the sum of certain of the

(J) t̂ ) ;
the representation induced in (t X t)j by the regular

representation of the group TT X TT is correspondingly reduced

into its irreducible constituents of the form
f)' X t).

It will be

remembered that this symbol stands for the correspondence

(",s)->L7 X U(s), (12.6)

where
t)', I)

are the irreducible representations a -> U'(a),

s -> U(s) of TT. This representation {)' X
I) appears with a

certain multiplicity b(x ', x) which is determined by the number
of pairs ij in (12.5) whose */ generate the representation f)'

and whose e f generate I).
These considerations are of course
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merely a repetition for the case at hand of the proof of theorem

(6.1).

We now return to the space of double tensors and consider
/v

the sub-space defined by those of the form IF. It is the

substratum of a certain representation Q(ZV X 27n )
of Sv X Eny

and its complete reduction is given by the formula

X n). (12.7)
X K

This remains correct even if v or n is less than /. Earlier in

this chapter we introduced the right- and left-invariant sub-

space t of t as that sub-space consisting of all elements F which

correspond to tensors F in the ^-dimensional vector space SR n .

On denoting this r
,
which depends on n (and only for n ^ f

n

coincides with the entire r), by r we should consider the algebra
v n v n

t X t instead of r X t. But if e\ is in r and e
j
in t, the manifold

v n

of elements x(ei
X e$) is not decreased on restricting x to r X r,

and every ek (e t )
which is equivalent to such an e'

{ (e })
also

v n

belongs to r (r). This shows that (12.7) remains correct under
v n

this restriction to r X r
;

the only effect is that those terms for

which
{, X n is the 0-dimensional representation are illusory

We are now ready to take the second step : to perform the

transition from the algebra Zv X Sn to 2 = Zn by taking y in

(12.2) as the identity. We then see immediately that the

representation 2(2) of 27, whose substratum consists of the

double tensors of 2 in the sense of equation (12.1), is completely
reduced into its irreducible constituents

, corresponding to

the various primitive characters x f
1*1 m accordance with the

equation

() = 2Xx)
X

The multiplicity m(x) with which this representation occurs

is given by

m(x] = ZW, xmX'), (12.8)

where Nn (x) is the dimensionality of the representation n ,

and the sum is extended over all the primitive characters x
of TT. Hence on disregarding the spin perturbation we obtain

the same type of reduction into non-combining systems of

terms as before, except that the multiplicity, which was previ-

ously equal to the dimensionality g of x, is now given by (12.8).
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(The spin perturbation causes weak inter-system combinations

to take place and, in addition, resolves each term of the system

X into its m(x) components. m(x) is the multiplicity of the

multiplet structure. Term systems x f r which m(x) = do

not appear at all.)

Our reciprocity theorem enables us to determine the con-

stants b. As mentioned before, TT is contained in TT X TT as the

sub-group of elements of the form s X s
;

the algebra p ~ (TT)

appears in p X p as the totality of algebraic elements of the form

a(s)(s X s). The elements xl of the algebra p constitute an
8

irreducible invariant sub-space J)i ;
let the irreducible repre-

sentation of 77 which is induced in this sub-space by the regular

representation be denoted by 1),
and its character by X(s). The

space of all elements of the form xl in p X p is then <pi> in the

notation of 10
;

it is the substratum of the representation

<t)!> of p X p. <f)i> contains the representation f)' X I) exactly
b times

;
the reciprocity theorem then tells us that the number

of times the representation f)' X f)
contains the representation

fyi
on restricting TT X TT to its sub-group TT is also b. Now this

restriction to TT sends the representation (12.6) of TT X TT into

the representation

(s, s)
-> U'(s) X U(s)

of TT. This means, however, that b(x ', x) ^ the number of times

the representation ij t of TT is contained in the representation ty x
I)

of TT (no longer with boldface multiplication sign !). Hence
b is expressed by

%', X)
= Wfc'WxW*- 1

)}. (12.9)

With this we have carried our solution of the problem of deter-

mining the multiplicities m(x) as far as is possible in the general
case.

Consider in particular the special cases (1) complete symmetry,
2=[5R/], and (2) complete anti-symmetry, =

{9i/} the

Pauli case. For the first X(s)
= 1. With each irreducible

representation x is associated the contragredient representation
with character x(s)

=
x(s

~ 1
} \

^ the substratum of the first

is generated by the idempotent element e the substratum of

the latter is generated by e. Or we may describe this situation

by saying that x and x are ^ie characters of mutually contra-

gredient representations. (Accidentally x(s
~ 1

}

~
x(s)

^or the

complete symmetric group TT
;

this does not hold for a general

permutation group, however, whereas our entire theory does.)

Equation (12.9) now becomes

b(K, X)
=
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But in virtue of the orthogonality property of characters this

mean value is 1 or according as the representation is equiv-
alent to x or n t- The expression (12.8) for the multiplicity
then assumes the simple form

The theorem that the representation f) X t)
contains the identical

representation s - 1 once or not at all according as
f)'

is equiv-
alent to the contragredient of

f)
or not is nothing other than

the fundamental theorem [III, (10.5)] on which the entire

theory of representations was based.

In the second (anti-symmetric) case X(s)
= 8 S . Now

is the character of the "dual 11

representation f)* associated

with
I) ;

if
f)

is generated by the idempotent element e then f)*

is generated by the idempotent e*(s)
= 8S e(s~

1

}.
Or if

v-

I)
: s --> U(s) then I)* : 5 -> 8^ [/(.?) . The expression for the

multiplicity is in this case

If we denote the 1-dimensional representation s -> 8S by {!},

the fundamental theorem mentioned above tells us immediately
that

f)' X 1)
contains the representation {!} once or not at all

according as
I)'

is equivalent to t)* or not. (12.10) is the actual

multiplet formula, for this second case is the one which is of

interest for atomic physics.

Additional Remarks.

The only cases of importance for physics, (1) that of sym-
metric and (2) that of anti-symmetric double tensors, can be

handled by elementary methods. We again refrain as long as

possible from making restrictive assumptions concerning the

field over which the algebras are defined. The method will be

illustrated by application to case (1).

(12.11) // e lt
e 2 are equivalent idempotent elements, then

e
lt

e2 are also.

Proof. Let ^ l be mapped on
J) 2 by a one-to-one similarity

correspondence jT : #2
= x\b ;

b is here the element, of char-

acter (e ly e2), into which e\ is sent by 7
1
. Let the inverse corres-

pondence carry e% over into a, which is then of character (e 2 , ej.
F carries a over into e% ;

since the element associated with a by
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F is ab we have ez
= ab. Similarly, we find with the aid of P~ l

that e l ba. We then have

e 2
=

ab, e l
= ba

;
e 2ae l

=
a, e^e^ = b.

Conversely, the existence of these equations guarantees that

x2
= xlb 1 %i = x2a

are reciprocal similarity correspondences J^^fo- That is, the

existence of these four equations means that e l and e 2 are

equivalent. We need only to
"
roof

"
these equations in order

to conclude that e l and ez are then also equivalent i.e., go
over to the quantities % associated with each of these % by the

definition x(s) x(s~
l

).
We have here neither assumed that

the e are primitive nor that the field is algebraically closed.

(12.12). The invariant sub-spaces , p generated by e. e are

the substrata of mutually contragredient representations.

Proof. Let $ consist of all elements xe
;
we introduce in

addition to this left-invariant sub-space the right-invariant

sub-space q consisting of all elements of the form ex. Let
tr (xy) be the trace of the elements x and y, which may vary
freely in

J), q, respectively ;
we assert that it is a non-degenerate

bilinear form. That is : if tr (ay)
= identically in q then the

element a of
J)
must be 0, and if tr (xb)

= identically in p the

element b of q must be 0. Indeed, if z is any arbitrary element

whatever and a is in
J),

then

az ae z = a ez = ay,

where y = ez is in q. Hence the assumption that tr(ay) in q

implies that tr(az) for arbitrary z, whence a = [cf. 4].

Similarly for the remaining case tr(xb)
= 0.

Now let
.p and q be referred to arbitrary co-ordinate systems

and let the co-ordinates of x, y be
,, 2 >

' ' "

v \ ^i* ^2,
* *

', *M

respectively. Then tr(#y) is of the form

(,*)

The theorem above shows that g ^ h and h ^ g, whence h = g,

and that the coefficients sik may be considered as the coefficients

of a non-singular linear transformation. Hence on choosing
the co-ordinate system in q in an appropriate manner tr (xy)

may be reduced to the canonical form
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But then

tr (xy)
= tr (yx)

= tr (yr~
l

rx).

Hence the simultaneous substitution

x' = rx, y'
= yr~

l

,

which does not lead out of p, q respectively, leaves the trace

invariant. These two transformations are therefore contra-

gredient in the new co-ordinate systems; our assertion (12.12)
then follows immediately on writing the second of these equations
in the

"
roofed

" form y'
= ry and noting that y runs through

A.

the left-invariant sub-space p generated by e as y runs through q.

After this preliminary skirmish we apply the method em-

ployed before, somewhat modified, to the case (1) in which

l

=j]Z(
s x*)-

We are now interested in the reduction (12.4) only for symmetric
elements #, i.e. elements which satisfy the equations

X (ar 9 sr)
=

x(a, s] (12.13)

for all r. This amounts to replacing x by xl
;
we subsequently

note that xl(e' X e) is not symmetric and accordingly multiply

again on the right by /. We thus replace e X e by l(e' X e)l

rather than (e

r

X e)l and proceed to obtain an explicit expression
for the reduction, rather than calling on the aid of the reciprocity
theorem. First, the components of l(e' X e) are (on ignoring
the factor I//!) given by

Ze'(ro)e(rs)
=

Zt(s-*r-*)e'(r<J)
= ee

f

(
S
- l

a).
r r

This expression vanishes if ee' =
;

for e' = e we find it is

equal to e(s~~
l
a)
=

e(a~
l

s). This suggests that we choose

as the two complete reductions (12.3) of the modulus 1. The

only terms in the sum (12.4) which then remain for symmetric
x = xl are those of the form x(e i X *,-),

and the factor l(e t X e
t )

is the element with components ^^(cr""
1

^). Since x(e t X ,-)
has

not been reduced identically to on restricting x to the domain
of symmetric elements, the sub-space which it generates is

A.*~

here, as before, equivalent to the irreducible p,:
X J^. The

next step consists in multiplying on the right with
/, whereby

e(a~
l
s) becomes, in accordance with (8.3) and (7.22),

--
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Our final result is that any symmetric x can be reduced in ac-

cordance with

x XB' + XB" + ,
where e(or, s] = ~

s(a~^) ; (12.14)

in deriving this result it is to be remembered that the number
of times any irreducible representation appears in the regular
one is given by its dimensionality.

It follows from the fact that e(s) is a class function that these

elements s', ", constitute a set of independent idempotent
elements in p X p. This result is in fact obtainable by direct

methods and is valid, regardless of whether the field in which
we are operating is algebraically closed or not. To show this

we note that any
"
symmetric

"
element x(ar t s) is a function

only of scr~ l in virtue of (12.13) : x(a, s]
= x(sa~

l
). Thus there

exists a one-to-one correspondence between the symmetric
elements of p X p the space of which we denote by [t X t]

and the elements of t. Direct computation shows that this

correspondence associates with each left-invariant sub-space of

[t X t] a left- and right-invariant sub-space of r, and conversely ;

the reduction of [t X t] into left-invariant sub-spaces thus

parallels the reduction of r into sub-spaces which are both left-

and right-invariant. The whole problem is thus much simpler
for

[r X t] than for r itself
;

its solution is obtained by carrying
over the equation

x = xe' + xe" + (7.5)

for the algebra p to
[r X t], the result of which is (12.14).

Nevertheless we must return to the previous less elementary

analysis in order to see and this result presupposes that the

field is algebraically closed that each of the irreducible in-

variant sub-spaces of
[t X t] obtained in this way is equivalent^

to a sub-space of the algebra t X t of the form p x
J) (where

^

$ and p are irreducible invariant sub-spaces of r with generating
units e and e).

The completely anti-symmetric case can be dealt with in a

corresponding elementary way.
The complete reduction of the manifold W2

of tensors in the

2-dimensionaf spin space 9^, v = 2, is accomplished with the

aid of the Clebsch-Gordan formula [III, (5.9)]. (c}
f is Kj X S t X

X i (/factors), where! is the representation of the linear

group c = C2 by itself, and by the formula mentioned above this

representation is completely reducible into the irreducible ( v ,

where v can assume only the values /, / 2, / 4, . The

dimensionality of ( v is v + 1, and to each of these possible
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limensionalities there corresponds here but one irreducible

epresentation. Formula (12.10) then tells us that there exists

nly one term system having the multiplicity p-f- !(=/+!,
1, / 3, ) ; compare the beginning of 15 on this point.
The preceding analysis seems to me to be necessary in order

o obtain a complete understanding of the relations implied by
he permutation group without recourse to the approximation
haracteristic of the theory of perturbations. So far as the

atter is concerned we proceed as follows. Again consider a

erm of the form (8.4) of the unperturbed system, the only

iegeneracy of which is that necessitated by the equality of

he /electrons. The perturbation equation is then

JWi, ' '

% */'/)
= Z*(sr*) F(i 1fe 1> , i,*,), (12.15)

fhere the a(s) are the exchange energies and i l if ,
k

l kf

re obtained from 1 / by the permutations s, t respectively.
,et

<f>
be the tensor in spin space defined by

F(t1l f
i22, -, t//)

= ^(412 /) ;

he anti-symmetry of the double tensor F then tells us that

nd on letting a'(s) 8S a(s), (12.15) becomes

<f>
=

a'fr (12.16)

'he problem is thus reduced to that of finding the characteristic

umbers of this linear correspondence in the 2/-dimensional

pace 3t{.

Let ^i(-P) be the characteristic functions of the single electron.

f the perturbation is due solely to the Coulomb forces between
be various electrons, that part of the energy matrix a(i l //;

i kf) which is due to the perturbation is obtained additively
om terms of the form

P P <P " ' dv<

^here a 4= ft
an(l the denominator is the distance between the

wo points PM and Pp. The orthogonality of the ^ tells us that

tiis integral can be non-vanishing only if the permutation s,

rhich sends the set of indices k into the set i (both of which
re permutations of 1, 2, , /), is either the identity or the

ransposition (<xj3).
In this latter case we find
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On the right-hand side of (12.16) we then have only the terms

arising from s I and the transpositions s =
(<xj9)

:

Dirac has given a remarkable formula for the transposition

acting on a spin tensor. Let @a be the spin of the ath electron
;

S%, S* S" are then the operators

1| ||0 -i]
1 0| ||i 0,

acting on the <x
th index of the tensor <

in particular

II

|o
-i

if). On calculating

(&&) = 515* + SJSJ + SJS*

(which should perhaps be written ((3
1 X @2

) instead, since &
affects only the first index and 2

only the second), we find that

it is the operator

acting on the first two indices, all other places being 0. Hence

a{l + &&)} is the substitution

<f>(00) #01), #01)

or the transposition of the first two indices. The energy (12.17)
mav then be written in the form

' a < ft

(12.18)

This may be interpreted as saying that the coupling between

the electrons a and B is responsible for the term ^

in the energy operator. However, the constant E does not

represent the energy of the unperturbed system.
16
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C. EXPLICIT ALGEBRAIC CONSTRUCTION

13. Young's Symmetry Operators

We now supplement the general theory developed above

by an explicit algebraic construction of the irreducible repre-
sentations of the symmetric permutation group TT = ny. This

problem is, as we know, equivalent to that of constructing the

primitive symmetry classes of tensors of order / by means of

idempotent symmetry operators e
;

here a
"
primitive

"
sym-

metry class is one such that the symmetry of the tensors be-

longing to it cannot be further increased by the addition of

further symmetry conditions such an additional condition

either reproduces all the tensors of the class or reduces them all

to 0. This construction is due to A. Young and G. Frobenius 16
;

with its help we are able to verify step by step the entire theory
of representations of the symmetry group in an explicit and

elementary manner.
We are already acquainted with two very simple processes

which yield tensors of maximum symmetry :

"
symmetrization,"

by means of which the tensor F yields the completely symmetric
tensor JsF, and "

alternation
" which sends F into s sF.

The first of these processes can be readily generalized as follows :

We divide the range from 1 to n of the
"
variables

"
ifa if ,

on which the general tensor component F(i li 2 if) depends
(or, what amounts to the same, the sub-indices 1, 2, , /),

into sub-sets of lengths/!, /2| ; /i +/2 + * * ' ~ / We then

symmetrize with respect to the indices of each of these sub-sets.

rrrrrrn

Pattern 7, 5, 4, 4, i.

This distribution into sub-sets may be readily visualized with

the aid of a
"
pattern

" P = P(fl9 /2 , )
as illustrated in the

accompanying figure [for the pattern P(7,'5, 4, 4, 1)] ;
each of

the / squares in the pattern is occupied by a different one of the

/ integers 1, 2, , /. Each of the sub-sets mentioned above

constitutes a horizontal row of the pattern, and the various rows

are arranged one under another. The individual sub-sets may
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be arranged in order of decreasing length : /j 2j /a
2>

;
the

pattern then consists of non-interrupted vertical columns as

well as non-interrupted horizontal rows. Those permutations

p which permute the members of each row among themselves

constitute a sub-group (p) of TT of order/, !/2 ! [denoted in 8

by ir(fi, /2 , )]. The symmetry operator described above, and
which is to be applied to an arbitrary tensor, is

henceforth p will always denote an arbitrary permutation which
sends no numeral of one row into another row.

So far we have made no use of the process of alternation.

If after having symmetrized with the aid of the operator a we
alternate with respect to certain of the variables or sub-indices

1, 2, ,/, we certainly obtain if any two of these numerals
are in the same row, for the tensor obtained by the symmetriza-
tion is symmetric with respect to any two such numerals and
the result of subsequently alternating with respect to them must
be 0. To avoid this situation we choose one variable in each of

the rows and alternate with respect to them
;

since the order

of the variables in each row is so far immaterial we may place
these chosen variables in the first column. We then disregard
the first column and proceed to alternate with respect to a set of

variables obtained by selecting one from each row of the re-

mainder of the pattern ;
these variables may now be shifted into

the second column. This process is continued until we have
covered the entire pattern ;

the result is that we have symmetrized
with respect to the rows and have followed this symmetrization by
alternation with respect to the columns. Let q denote an arbitrary

permutation which permutes the variables in each column among
themselves

;
these q constitute a certain sub-group (q) of TT.

The alternation described above consists in applying the sym-
metry operator

* = ZV 9,
9

and the entire process consists in applying the resultant operator

c = ba = q
-

qp.

We call c the Voting symmetry operator belonging to the

pattern P.

In order to obtain a unique symmetry operator c associated

with a given pattern P we must specify the way in which the

numerals from 1 to n are to be distributed in P : they shall be
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introduced in such a way that on reading the pattern, as one

would read a page of a book, they appear in their natural order

1, 2, , /. If we write them in any other order, say that ob-

tained from the standard form with the aid of the permutation r,

we obtain a
"
conjugate

"
element cr which, as is readily seen

on considering the relation between the tensors generated by
these two operators, is related to c by

crr re or cr (s)
=

c(r~
l

sr}.

Hence the introduction of r results merely in a new name.
From now on we operate with symmetry quantities, i.e.

elements of the algebra (TT),
instead of tensors

;
we consider the

invariant sub-space p c of t consisting of all elements of the form

y = xc and the representation t) c
of TT induced in it by the regular

representation. With p c is associated the symmetry class ty c

of all tensors of the form cF. If we replace c by one of its con-

jugates cr we obtain instead of p c an equivalent invariant sub-

space ;
in this sense the order in which the variables are written

in the pattern is quite immaterial. We hope that c is irre-

ducible and that the totality of representations f) c
associated

with all possible patterns constitutes a complete set of inequi-
valent irreducible representations of TT. This hope is strengthened

by the fact that the total number of patterns is just equal
to the number of inequivalent irreducible representations. To
show this we note that the number of patterns is equal to the

number of partitions of / into integral non-negative summands

/ = /i +/2 + ' ' * which satisfy the condition /x S^/2
2> .

On writing

Jl /2
~ Y

\i J2 /3
=== r

2>

we see that this number is equal to the number of solutions of

the equation

lr, + 2r2 + 3r3 +..-=/
for non-negative integral r. But we have already seen that this

is the number of classes of conjugate elements in TT and, by the

general theory, is therefore equal to the number of inequivalent
irreducible representations of TT.

If the dimensionality n of the vector space is less than /
the only non-vanishing symmetry classes are those arising from

patterns containing at most n rows, for if the first column is

longer than n alternation with respect to the variables standing
in it alone causes an arbitrary tensor to go over into 0. The

only patterns which we need in this case are consequently those

obtainable from the algebra r
,
instead of r, where r = \W as
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defined in 2 above. The number of inequivalent irreducible

invariant sub-spaces into which the tensor space SR/ can be

reduced is accordingly decreased to the number of partitions

of / into n integral summands / = A + /s + ' * ' + fn f r which

A^A^-'-^/n^o.
A permutation s = qp which is obtained by composition

from a permutation p of (p) and a permutation q of (q) can be

so obtained in only one way. This is an immediate consequence
of the remark that the equation qp = I can be fulfilled only by
p =z |

? q |, for it asserts that p = q~
l
belongs to (p) as well

as to (q). The components of the symmetry operator c can

therefore be described as follows : c($)
= unless s belongs to

the set (q)(p) ; when s belongs to this set c(s]
= 1 according

as the unique decomposition s = qp yields an even or an odd

permutation q.

We must now prove the following three assertions con-

cerning c :

(1) c is essentially idempotent ; or, more precisely, c satisfies

an equation cc --- y c, where y is a non-vanishing numerical

factor. Furthermore, y is an integral positive number which
is a factor of /!. Then replacing e by e r/y, e is idempotent.

(2) The sub-spac p c is irreducible, the e introduced in (1) is

primitive.

(3) Different patterns lead to inequivalent sub-spaces p c .

The execution of this programme depends upon a simple
combinatorial auxiliary theorem, which we now proceed to

develop. Denote the lengths of the columns in the pattern
P with rows of lengths /lf /2 , by /*, /*,'*:

/.+/ + /*+/; + =/.
* We think of the pattern P as cut out of a rectangular chess-

board consisting of fl horizontal rows and /* vertical columns,
and the permutation s as operating on / chess-men occupying
the / fields. On interchanging rows and columns in P we obtain

the dual or transposed pattern P* .

Auxiliary Theorem. A permutation s belongs to (qp) if and

only if any two pieces originally in the same row are not sent into

the same column by s.

Proof. It is evident that this condition is necessary in

order that s belong to (qp}. The change of position which one
of the pieces suffers as a result of s can be accomplished in two

moves, a horizontal and a vertical move (in this order). It

is at first conceivable that the horizontal move could send the
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piece into a field of the original board which is not contained in

the pattern P. If the decomposition 5 = qp is possible p must

represent the horizontal move and q the subsequent vertical

one
;

it is clear that q and p are thus uniquely determined.

Now if s satisfies the conditions enunciated in the above theorem
the horizontal move can never throw them into the same column,
i.e. the same field. It only remains to show that the horizontal

move can never send any piece out of the pattern proper, or :

those pieces which s sends into a column of length f* come from the

firstf* rows of the pattern. We divide the chess-board horizontally
into an upper and a lower part, the upper consisting of the

first /* rows. The pieces which are sent into the first column

by 5 are, by assumption, from /* different rows
;

hence there

are at least (and therefore exactly) /* /* of them which come
from the lower part of the board and not from the first/* rows.

Note that /* /* is exactly the number of fields in the first

column which lie in the lower part of the board. On applying
this argument to each column in succession we find that the

number of pieces which s sends into those columns which pro-
trude into the lower part of the board is exactly equal to the

number of fields in this part of the board. Hence all the pieces
in the lower part of the pattern are sent into columns whose

lengths are greater than /*, and the only pieces s sends into a

column of length /* come from the upper part of the board.

This auxiliary theorem allows us to assert that if s does not

belong to (qp) then there exist two pieces in a single row which
are sent into the same column by s. If u denotes the trans-

position of the two pieces in their initial positions and v their

transposition in the final then su = vs
;

here u belongs to (p)

and v to (q).

14. Irreducibility, Linear Independence, Inequival-

ence, and Completeness

We now examine the Young symmetry operators c associated

with the various patterns. Obviously

c(sp)
=

c(s), c(qs)
= 8q -c(S), (14.1)

where p, q are, as usual, elements of
(/>), (q), respectively.

17

Theorem (14.2). Any element a of (TT) which satisfies equations

(14.1) :

a(sp)
=

a(s), a(qs)
= S,.a(s) t (14.3)

is a multiple of c.
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To prove this theorem we first note that (14.3) implies

a(qp] = 8, a(l) ;

i setting a(l)
= A the equation

a(s)
= X-c(s),

hich is to be proved, is certainly correct for all group elements
of the form qp. We must next show that a(s)

= Q it s does

)t belong to the set (qp). Such an s implies that there exist

anspositions it and v, lying in (p) and (q) respectively, for

hich su = vs. But then by (14.3)

a(su)
=

a(s), a(vs)
= 8 V a(s)

=
a(s),

hence a(s)
=

a(s) or a(s)
= 0.

Theorem (14.4). Every element of (IT) of the form cxc is a

ultiple of c.

It was shown in the general theory that this theorem is

ilid if c is a primitive idempotent element of
(IT)

and if

le field in which Nve operate is algebraically closed
;

here we
)proach it from the opposite direction, as we wish to show

rectly that it hold$ for c in order to prove that c is primitive,
ow obviously any element of the form xc satisfies the first of

}uations (14.3) and any element ex the second
;

hence any
emcnt of the form cxc has both properties and is consequently
multiple of c.

Theorem (14.5). cc = yc and y is a positive integer which

contained in/!.
That cc is a multiple of c follows immediately from the

revious theorem
; y is therefore the number

y = Zc(t}c(t')
=

c(s) C(f).
tt' = I 8

et the sub-space J) c of elements of the form xc be of dimension-

ity The projection

x -+y = x (14.6)

rojects any element x into an element lying in this sub-space
id is, within

;p c itself, merely the multiplication y = yx. Its

ace is therefore yg ;
to see this we need merely to adapt the

)-ordinate system in group space to the sub-space J) c
. On

le other hand its trace is immediately obtainable from (14.6) or

y (s)
=

x(t)c(s-*t) ;

is/!c(l) ==/!, hence
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Consider the meaning of this fact that y is positive, i.e. that

c(s)c(s~
l
)

is oftener positive than negative !

e = c\y is idempotent ;
hence the character of the repre-

sentation t) c induced in
J) c by the regular representation is

by (8.3)

xM = ifr-). (14.7)

We obtain as a by-product the fact that the dimensionality g

of the representation f) c is a factor offl.
Theorem (14.8). J) c

is irreducible.

We know already that this theorem is a consequence of (14.4),

but it may be instructive to prove it directly as follows. Let

e = c\y be reduced into two independent idempotent elements

eei eie e
i, whence ee^e ev

Now by theorem (14.4) any element of the form ee^e is a multiple
of e

;
hence e

l
= Xe. e lel

= el then yields the equation A2 A

for the number A. Consequently either A = 1 or A = 0, i.e.

either e v
= e or e l

= 0.

We shall say that the pattern P' with rows of lengths

fit /L*'" is higher than P if the first non-vanishing difference

/i A, /2
~

/a,
' - ' is positive.

Theorem (14.9). // the pattern P' is higher than P then

c'c = 0.

We do not here assume that the variables are written in

the patterns P, P' in the normal form agreed upon in the previous
section i.e. in which the numerals appear in their natural

order on reading the pattern as one would a page of a book.

The proof is based on the fact (F) that there exist two numerals
which are in the same row in the pattern P' and in the same
column in the pattern P. If v is their transposition it belongs
to the group (p

1

)
associated with the rows of P' and at the same

time to the group (q) associated with the columns of P
;

hence

c'(sv)
=

c'(s} } c(vs]
=

c(s).

On replacing vt in

c'c(s)
= Zc'(sr

l
}c(t}

==
Zc'(sr*)c(vt} (14.10)

t t

by t alone we find

c'c(s)
= Zc'(sr

l

v)c(t)
=

c'(st~
l
)c(t)

=
c'c(s}. (14.11)
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(F) is evident if the first row of P' is already longer than the

first row of P, for it is impossible to distribute the // numerals

in the first row of P' over different columns of P if /x < f(.

If /i
=

/! and the numerals of the first row of P' are actually
distributed over different columns of P, we discard the first

row of P' and the ft fields of P containing the same numerals as

this row. On shifting the fields of P upward to fill in the gaps
P is transformed into a pattern which has exactly the same

appearance as if we discarded the first row of 5
;
we are only

interested in the fact that this process leaves all pieces in their

original column. The proof can then be completed by mathe-
matical induction by assuming that it holds for the abbreviated

patterns obtained by omitting the first rows of P and P'.

Theorem (14.12). Let c, c', be the Young symmetry
operators associated with different patterns P, P'. ; the corre-

sponding sub-spaces p f , p f ,
are then linearly independent.

Let the P, P', P", be arranged in such an order that

P is higher than P', P' higher than P", *. An element x of

p = p c is reproduced by right-multiplication with c/y but, by
the previous theorem, this process transforms all elements

x
f

of ',
x" of J)",

- - into 0. Assume there exists such a linear

dependence
x + x' + x" + - -

;

on right-multiplication with c we find x = and consequently
x' + x" + 0. The theorem is thus reduced to the

same theorem for the smaller set P', P", ,
and the proof

follows by mathematical induction.

Theorem (14.13). Different patterns P, P' give rise to in-

equivalent sub-spaces p f> p c >.

The proof is accomplished by a direct derivation of the

orthogonality relations. Let P' be higher than P. Since we
did not assume in proving theorem (14.9) that the numerals
were distributed in the same order in the two patterns P and P',

we may replace the element c with components c(s) by the
"
conjugate

"
element c r

-i with components c(rsr~
l
)

:

2c'(st-
l

)c(rtr~
l

)
= 0.

t

Summation with respect to r yields

Xc'(sr*) X,(t]
= 0.

On writing x = Xc> X ==
Xc' this formula is equivalent to

2x'(sr
l

)x (t)
= o.

t
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In particular

If the two sub-spaces were equivalent we would have %'(t)
= x(0>

and since x^""
1
)
== x(0 f r 'he symmetric group the above

equation would yield

= o.

But this is impossible, for by (14.7) the character x(s) has

rational components, and in particular x(l)
= g 4= 0.

This last conclusion is valid only if the number field in which
we operate is non-modular

; naturally this restriction is irrelevant

for physics. Nevertheless it constitutes a blemish which should

be removed, for the remainder of our deductions only introduce

the minimum assumption that /! is not in the field under

consideration. Now from the general theory we know that

Theorem (14.14). ZxMxfc"
1
)
=A

8

The blemish mentioned above is removed by proving this

theorem directly. We must show that

or

Ze(rsr*r~*)e(s)
= 1.

r, *

On replacing the summation variable s by sr, where r is fixed,

this becomes

Ze(sr)e(s~
lr- 1

)
= 1. (14-15)

r,*

Consider next the function

a(s 9 s')
=

Ze(sr)e(s'r-i) ;

r

as a function of s it satisfies the second condition in (14.3).

But the first of these conditions is also satisfied, as can be seen

immediately by replacing r in

by the summation variable p~
l
r. Hence by (14.2)

*(*, *')
=

c(s) Ee(r}e(s'r-i]
=

c(s)
-

e(s'}
- c
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and therefore the left-hand side of (14'15) or

* t / i\ * i / \ / \

is actually equal to 1.

The relations

(14.16)

show that the primitive characters obtained by our construction

from the various symmetry patterns are linearly independent,
and since their number is equal to the number of classes of

conjugates in the group TT, any class function can be represented
as a linear combination of the x(s }-

^n particular, the function

l(^), which is 1 for 5 = | and otherwise 0, must possess such

an expansion :

f\'l(s) = mx(s) + m'x'(s) + -
. (14.17)

Multiplying by x(s
~ l

)
an<^ summing over s we obtain, with the

aid of the orthogonality relations (14.16), the equation

or

m = g (14.18)

for w. Since

yM = e
(
rsr

~ l
)
= er(s),

r r

equation (14.17) gives the reduction of the modulus 1 into

primitive idempotent elements er . Hence the regular repre-
sentation is reduced into the irreducible representations t) c

associated with the various symmetry patterns. Since /! l(s)

is the character of the regular representation, eq. (14.18) is a

direct verification of the fact proved in the general theory that

the number of times each irreducible representation appears
in the regular representation is equal to its dimensionality.
This completes our direct and elementary development of the

theory of the representations of the symmetric group.
The method of proof employed in establishing theorem (14.9),

i.e. that cc' = if P' is lower than P
t
will now be used to answer

another question. Let a be the operator, introduced in the

previous section, which symmetrizes with respect to the ciphers

occupying the rows of P :

a(s)
= 1 or according as s belongs to (p) or not,
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and let the numerals be written in the pattern P', which is

lower than P, in an arbitrary order. I assert that ac' = 0.

There exist two numerals which occupy the same row in P
and the same column in P'. If v is the transposition of these

two numerals then

a(sv)
=

a(s), c'(vs)
= c

f

(s) 1

and the assertion is proved with the aid of (14.10), (14.11) on

replacing c', c there by #, c' . Hence also

a(st-*)c'(rtr-
1
)
=

0,
t

Za(st-*)x'(t)
= or a(r^)x'(rs)

= 0.
t r

That is, the sum of the \((] extended over all elements t = rs

which are left-equivalent to s mod. (p) [i.e.
r in (p)], is zero.

In particular, x(s
} ^> where the sum is extended over all

8

elements s of (p) ; % is the character associated with a pattern
P' which is lower than P. On applying this result to the con-

siderations of 8 (in particular, to (8-13) ff.) we find :

// the individual I has the simple energy levels Elt E 21 the

term

of the unperturbed system V appears only in those symmetry
classes of tensors whose pattern P' P(// f /2

'

)
is not lower

than P = P(/>/2
-

)

Thus we saw in discussing the two-electron problem that

terms of the form El + E2 appeared in the
'*

anti-symmetric
"

as well as the
"
symmetric

" term systems, whereas terms such

as 2El appeared only in the latter.

Finally, we consider the relations existing between two
dual patterns P and P* with generators c, c* and characters

X, x*- The group (p) which permutes the members of each

row of P among themselves coincides with the group (q*) which

permutes the members in each column of P* among themselves
;

similarly (q)
=

(p*). If s = qp is in (qp), then s~ l = p~
l
q~

l =
q*p* is in (q*p*} }

and conversely ;
for such an element

c(s)
=

8,, <:*(*-')
= 8

?
. = 8,.

Hence in general even when s is not in (qp) and, consequently,
s" 1

is not in (q*p*) we have

c*(sr
l
)
= 8, c(s).
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" Dual
"

elements c, c* are therefore related to each other in

exactly the same way as the
"
duals

"
introduced in 12.

Further

y* = r; x*(O =
x*(*)

= s.-xW ; g* = g.

If P is higher than Q, then conversely P* is lower than Q*.
For if we lower P by taking away the last field of one of the

rows of P and adding it to the end of a later (shorter) row, one

of the columns of P is increased at the expense of a later (shorter)
column

; by such a process of shifting individual fields, in which
no gap is to occur in a row or a column, P can be transformed

into the lower pattern Q.

15. Spin and Valence. Group-theoretic Classification

of Atomic Spectra

If the vector space 3R = 3t 2 * s only 2-dimensional, the only

symmetry patterns P which give rise to primitive symmetry
classes of tensors of order f are those which consist of at most
two rows. Let the first row contain / + v fields and the second

/
;
then

v=f- 2/.

The symmetry pattern P is thus uniquely characterized by the

number v
}
which we call its valence, and v may assume any of

the values /, / 2, / 4, . Let ty v be the totality of tensors

of the form cF obtained by applying the Young symmetry
operator c associated with the pattern P to the totality of tensors

F
}
and let v be the representation of the linear group, the

substratum of which is the tensor manifold ?$ v . A sufficiently

general tensor of order / which is symmetric in the first as well

as the second rows of indices is given by

JXJX---XJXE (I + v terms)
X t) X t)

X X t) (/ terms),
where

are two arbitrary vectors. On alternating with respect to the

columns we find that the representation SQ V of the linear group
C = c2 is that one which is induced on the quantities

(*0>2
" X&lY *? 4S

(
r
l + r2

=
V).

Hence v is the representation of the linear group which was

denoted in III, 5, by v .
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This remark supplies the connection with the symmetry
problem of quantum mechanics as dealt with in 12 on apply-

ing the Pauli exclusion principle when the existence of the spin,

but not its dynamical effect, is taken into account. 18 Since

the spin space is 2-dimensional, formula (12.10) tells us that

the only patterns P which give rise to a term system are those

whose duals P* consist of at most two rows, i.e. those P which
themselves have but two columns. If v is now the number of

fields by which the first column of P exceeds the second we call

v the valence of the term system or of the corresponding state of

the atom. The multiplicity of the term system with valence

v is v + 1, and to each of these possible multiplicities corre-

sponds but one term system as we have already seen in 12

(in particular p. 356). We previously (Chap. IV) called s = v/2
the

"
spin quantum number."

The fact that the longest column of P cannot exceed the

dimensionality TV of the vector space 9ft e associated with the

electron translation may result in a further restriction on the

possible symmetry patterns P. This situation cannot arise

as long as we deal with the total oo -dimensional system space.
On the other hand if we restrict ourselves, for example, to those

states of the electron which are characterized by a fixed principal

quantum number n and a fixed azimuthal quantum number /

and which therefore constitute a (21 + l)-dimensional sub-

space ^{(nl) within $R t i.e. if we consider only those states of

the atom in which all the / electrons outside a closed core are

in 3t(n/), the dimensionality TV is reduced to 21 + 1. Then /
cannot exceed 2(21 -\- 1) and the possible valences of the states

under consideration are given by the following table :

f 1, 2, 3, 4, , 4/, 4/ + 1, 4/+2

1010 1

2 3 2 2

4

This table again gives us the alternation law, but shows that in

addition the number of possibilities decreases from the middle
of the table on. The possible multiplet numbers 2s + 1 of

terms in these states is one greater than v.

This " valence" v, which describes the symmetry state of

the system, is actually the chemical valence, as was shown by
JF. London. We allow two atoms, consisting of flt /2 electrons

respectively, to come together to form a molecule with/ fl -\- /2

electrons. Let ^ $ 2 be irreducible invariant sub-spaces of
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the system spaces SR/
1

, 9t{* respectively. In order to find which

symmetry states the molecule is capable of assuming when the

first atom is in the state ^ and the second in $ 2 we must com-

pletely reduce the space ^ X ^ 2 m^o its irreducible constituents.

If we consider this decomposition as taking place in the vector

space of electron spin rather than in that of electron trans-

lation (the justification for which will be given below), the

problem is solved by the Clebsch-Gordan series (III, 5.9) ;
it

tells us that if the valences of the symmetry states of the two

atoms are v ly v 2 the resulting symmetry states of the molecule

are those with valences

v = Vl + v2 ,
v l + v2 2

y
vl + vz 4,

-

-, j^ v2 \. (15.1)

This situation can be readily visualized in terms of the symmetry
patterns as follows. Bring the two symmetry patterns P

lt P2

1

of the two atoms into the positions shown in

the accompanying diagram and then shove 2

vertically upwards, one field at a time, until one

of the two columns of the combined pattern is

closed
;
each of these steps represents a possible

symmetry pattern for the molecule, in which v is

the number of fields which are not paired hori-

zontally. The saturation of the valence bonds
here appears as the pairing of fields or, more physi-

cally, as the saturation of the spin of an electron

in one of the atoms with that of an electron in the

other. The empirical theory of the valence bond
has therefore a rather profound significance.

We have yet to justify our use of spin space
rather than translation space in the above. Let the representa-
tion of the permutation group rrf corresponding to the two-

columned symmetry pattern of valence v be denoted by t) v ;
its

dual
!)

consists of but two rows. The Clebsch-Gordan series,

together with the third reciprocity theorem of 10 as applied to

the linear group C C2 ,
tells us that on restricting TT to the sub-

group TT' == 7rx X 7T2 which permutes the electrons of each atom

separately the representation t)* of TT contains the irreducible

representation f)^ X f)*f
of TT' once or not at all, according as

v is one of the values (15.1) or not. From this it follows im-

mediately that the same result holds for the duals on reducing
i)v after restricting TT to TT' . Applying the same reciprocity
theorem in the opposite direction for the case in which c = Cn

is the linear group in n dimensions, we find that the representa-
tion )

Vl x Va
of c (or the algebra 2) contains the representation
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v once or not at all according as v is one of the values (15.1) or

not. On reducing ri X V2
into its irreducible constituents

we may expect to find other representations which may even

occur more than once in addition to these simple ), but these

additional representations will correspond to symmetry patterns
with more than two columns and are, in virtue of the Pauli

exclusion principle, of no importance for physics. The number
b introduced in 11 is accordingly at most equal to 1 in the case

of diatomic molecules.

Molecules which consist of a larger number of atoms can

be studied by the same method. If in particular we are in-

terested in the case of three atoms and their valences are v l} v 2} z> 3 ,

we can determine with the aid of the Clebsch-Gordan series

the number b v of times the representation (S v occurs in the

reduction of (
Vl X (S t,

2
X V3

. Those v for which b v 41 are

the valences of the possible symmetry states of the molecule

and b = b v (which may here be greater than 1) are the corre-

sponding multiplicities. The characterization of the quantum
and symmetry states of a molecule which is formed by the

union of three atoms in given quantum and symmetry states

requires, in addition to the valence v, a further index which

distinguishes between the various b v possible energy levels.

But this description of the various possibilities differs from the

empirical theory of the valence bond the manifold of possible

bindings is smaller. 20

Classification of Spectral Terms.

Let the unitary or the complete linear group cvn in the system
space 9? of the single electron be restricted to the group cv X Cn

of transformations Sv X Sn ,
the two factors of which are trans-

formations of the spin and translation spaces 9lv ,
91 n respectively :

9t = 91,, X 9i n . The space {9U} of anti-symmetric tensors of

order / is then reducible into irreducible invariant sub-spaces
with respect to the algebra of symmetric transformations of

the form (12.2). We thus obtain a distribution (I) of spectral
terms among the various symmetry classes

;
this step is of

universal validity and is applicable to molecules as well as

atoms.

The further classification of terms, as discussed in Chapter IV,

A, refers to
"
simple

"
rather than

"
quantum

"
states, i.e. to

those states which are related to spatial rotation and moment
of momentum in the same way that the quantum states are

related to displacement in time and energy. Naturally this

application of the rotation group b = ba (the elements of which
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we now denote by a, r, )
is significant only for atoms (or

ions), the nuclei of which are considered as fixed centres of

force. So long as we concern ourselves only with the electron

translation and neglect the mutual perturbations of the electrons,

which are characterized by principal and azimuthal quantum
numbers n and

/,
each individual term of the system is char-

acterized by the quantum numbers (n lt /x ;
n

2l
/2 ; ;

nft //).

The number of times such a term appears in a given symmetry
system is equal to the dimensionality of the linear sub-space
in which the atomic states under consideration lie. The resolu-

tion caused by the mutual perturbations parallels the reduction

of this sub-space into its irreducible constituents 9U with respect
to the group b of rotations

;
the resulting components of the

term have the natural multiplicities 2L + 1. The spin space is

similarly to be reduced. Let b induce the representations

f)v
: or -> [/(or) and ( : a -> V(d) in 5RV and 5Rn respectively. This

second step (II), in which the spin and translation spaces are con-

sidered separately, is interpreted from the stand-point of group

theory as meaning that we associate with the element (a, r)

of b X b the transformation U(a) X V(r] ;
we thus obtain a

6-parameter sub-gfoup of cv X C n ,
and on restricting C, X C n to

this sub-group our original irreducible sub-space is further

completely reducible into irreducible constituents. The irre-

ducible representation of b X b induced in such a sub-space is

of the type s X f. The final step, (III), consists in introducing
the coupling cr r : the 6-parameter sub-group is thereby
restricted to a 3-parameter sub-group, i.e. that sub-group
induced in the total system space by the rotations b. The

spin perturbation then resolves each such term multiplct into

its (at most 25 -f- 1) components :

. X 3>i = 2E>, (j
- / + 5, / + s - 1,

- -

, |/

-
s\) ;

j

naturally $) X ^i is here a representation of b instead of b X b.

Actually v 2, and the transformations induced in the

spin space 9R2 by the rotation group constitute the unitary group
in two dimensions. Consequently the transition from Cv to

I)v

in step (II) involves no reduction in spin space this is the

essential simplification caused by the fact that $RV has so small

a dimensionality.
To the symmetry system of terms corresponds a certain

irreducible representation of the unitary group ll in the space
3t* of the electron translation and with it a certain irreducible

characteristic
( 9)

X = X(e,, 2 , ).
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The co-ordinates #t
- in the space 9ft* are broken up into classes

in the manner described in Chapter IV, 1 :

x(m) [w = /, / 1, ',/];
x'(m') (m

f = V /'
-

1, -..,-/']; .

Each of these classes describes a (21 + l)-dimensional sub-space

9ft(n/) of 9ft* in which the group t)3 of spatial rotations induces

the irreducible representation
<

$) l
and is characterized by the

principal quantum number n and the azimuthal quantum number
/. The arguments e

t
- of X are correspondingly broken up into

classes. To give the principal and azimuthal quantum numbers
of the individual electrons without stating how these numbers
are distributed among the / electrons we need only to state

how many (/') electrons are represented by states in each of

the various sub-spaces 9ft' = 9ft(n/). If, for example, 3 of the

electrons are in 3ft' and the remaining 5 in 9ft" (/
=

8) we must

separate out that part of X which is of degree 3 in the variables

e
t
- belonging to 9ft' and of degree 5 in those belonging to 9ft".

The multiplicity M of the corresponding term

E(n^) + E(n 2l2) + + E(n,lf )

of the
"
unperturbed

" atom in the symmetry system under

consideration is then obtained from the part of X described

above by setting all e contained in it equal to unity. In order

to determine how this M-fold term is broken up on taking the

mutual influence of the electrons into account we replace the

variables e(ra) of the class 9J(/) by e(m) = em
,
the variables

e'(w') of the class 9ft(nV) by e'(w')
= m '

(with the same e), etc.

The resulting expression must be a linear combination of the

sums
+ L PL + 1 __ c - L

em--L 1

with non-negative integral coefficients. This enables us to

tell which of the various total azimuthal quantum numbers L
appear, and how often, in the resolution of the above term

;

each such L-term has still the multiplicity 2L 4- 1.

Example. We consider, as an example, the case in which

/ 3 and all three electrons are in the same sub-space 9ft(n/).

The possible symmetry patterns are

n up
rrri

n ~
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The Pauli exclusion principle allows only the first two
;

their

valences are v = 3 and v = 1, and the corresponding terms are

therefore quadruplets and doublets, respectively. The first

pattern defines the anti-symmetric tensors of order 3 and the

third the symmetric tensors. The corresponding characteristics

are therefore

X
l
= sl

= /*, X 3
= ^7 e

t

t < j < fc i <*j <^k

On introducing

*, ^ = 27s?

we have X 3
= s l + s 2 + % The dimensionalities of the re-

presentations of 7T 3 corresponding to these three patterns, and
therefore the numbers of times the representations X

x ,
X 2 ,

X3

of C appear in (c)
3

,
are easily shown to be 1, 2, 1, (in accordance

with the equation 3! = I
2

-f- 2 2
-f- I

2
).

Now the characteristic

of the representation (c)
3 of c is

<i
= (re,)

3 =
^3 + 352 + 6*! ; (15.2)

1

the equation .

/,
= X

x + 2X 2 + X 3
-

(2s, + s 2 + 5 3) + 2X 2

then allows us to conclude that

X 2
- s 2 + 2s,.

We prefer to carry out the evaluation with the aid of the sums
of powers

t\i ^2 27Si
'

27 i> ^3
=

&% ;it i

we then have

^2
^^

^3 i $2, ^3
==

^3

in addition to (15.2). Consequently the characteristics in

which we are interested are :

Doublets : X 2 -(t, * 3), (15.3)o

Quadruplets : X, -
-^(t,

-
/3)
-

(f 2
-

^ 3)
J.

(15.4)

The solution of the problem discussed above is now obtained

by replacing the 2/ + 1 variables s, by the set
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and then expressing t^ J2 > ^3 as a sum 2aL(L] of expressions of

the form

with integral multiplicities aL . The computation is considerably

simplified by multiplying both sides of the equation by e 1,

as (L) then becomes /yfl e~ L
. The multiplicities so obtained

are given in the following tables :

:='-
o/j ol 1

,
3/ 2, *,

/

Multiplicity : 1
, 2, 3,

=
0, 1, 2L

-

-,
/

UV57
(increasing by i each step) (increasing by 2

each step).

t2
1 ^^'J^iJL3^2^ ~iA

*

ji ;

Multiplicity: 1,

"

0, 1, 0,

"

~~%"T
'

(alternately i and o)

L =
/, / - 1, /

-
2, /

-
3,

1, -1, 1, -1,
(alternately i and i)

L = 3/, 3/ - 1, 3/ - 2, 3/ - 3. 3/ -
4, 3/ - 5,

Multiplicity. 1, 1, 0, 1, i, 0,

(repetition with period 3)

On applying these results to the computation of X 2 ,
X

l with the
aid of (15.3) and (15.4) we find that the number of terms with
total azimuthal quantum number L is as given in the following
tables :

Doublet System

(1)
L = 0, 1, 2,

| 3, 4, 5, |

0121234
up to L = /. The period is here 3

;
the multiplicities in the

second period are those of the first increased by 2, those in the
third are obtained from those in the second by adding 2, etc.

,

2
. L = 3f, 3/ - 1, 3f - 2

|

3/ - 3, 3/ - 4, 3/ - 5, I

V ' 01 1
|

1 2 2"
1

down to L == /. The periodicity is again 3, but the multiplicities
in each period are obtained from those in the previous one bv
adding 1 instead of 2.

Quadruplet System. The periodicity is here 6 instead of 3
(1) For the values of /. from to / the first period of multi-

plicities (L = 0, 1, 2, 3, 4, 5) is for even / : 1 2 1 2 and for
odd / : 1 1 1 2 1. The multiplicities increase by 2 from period
to period.

Pure Mathematical Physics



DETERMINATION OF CHARACTERS OF u AND <n 377

(2)
For values of L from 3/ down to / the first period is

300101 regardless of whether L is odd or even, and the

nultiplicities are increased by 1 from period to period.

16. Determination of the Primitive Characters of

u and TT

The guiding principle in the whole of the present chapter
is the reciprocity between the symmetric permutation group 777

and the algebra H of symmetric transformations. But this

latter can, as was shown in 1, be replaced by the special

symmetric transformations induced in tensor space by the linear

transformations of vector space and which constitute a group

(c)f isomorphic with the linear group C. Indeed, we may even

restrict c to the unitary group u. The algebra S is thereby
referred to a group not to a finite group, it is true, but to a

dosed continuous group. Now we have seen in Chapter III

that we may expect such groups to behave in a manner entirely

analogous to that met in dealing with finite groups, at least

if we concern ourselves only with unitary representations. As
a rule we find in mathematics that the continuum is more easily

handled than a discrete manifold
;

the formula (9.11), which

expresses the fundamental reciprocity mentioned above, will

therefore better serve to compute x from X than the converse.

We therefore next evaluate the characteristics X of the

continuous irreducible unitary representations of the n-dimen-

sional unitary group li by a direct method which is independent
3f our previous development. The case n -- 1 has already been
solved in III, 8

;
the procedure there developed serves as

a model for the present case. With this in mind we first prove
the following auxiliary theorem :

A continuous function /(eoj, o> 2 , -,
a) n )

of absolute value
1 which possesses the period 277 in each of the n real arguments
and which satisfies the functional equation

a

is necessarily of the form

/((to))
=

e(h la> l + h^a) 2 -f

where the constants h are integers.
On introducing the n functions

/iH =/K 0, 0, ., 0), /,() =/(0, a,, 0, -, 0),
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of one variable, we are able to conclude from the functional

equation above that

It therefore suffices to prove the theorem for functions /(o>) of

one variable, and this we have already done [III, 8],

Every element 5 of the group it is conjugate to a
"
principal

"

element E, i.e. to a transformation of the form

*-># (v
=

1, 2, -, n). (16-1)

The numbers ev are of unit modulus and may therefore be ex-

pressed as

e, - /"" = e(a> v )

in terms of the
"
angles of rotation

"
a>

ly
to 2 , -,

o> n (which are

only determined mod. 2?r) of the unitary transformation 5.

In order to employ the orthogonality relations it is necessary
to determine the volume dS of that portion of the group mani-

fold U whose elements have angles between a)v and a>v + da>v .

ai> a t,
' '

"i
a n being any n numbers, let D(a lt

a 2 , ,
an )

denote

the product

n(ai -a k)= \a
n
"\ , a, I

\

i < k

of differences
;

the n rows of the determinant on the right are

obtained by replacing a successively by a
ly

a 2y
'

,
a n . The

evaluation of the volume clement dS will be carried out in the

following section
;
we here anticipate the result

dS =-- A A&^rfcos - rfw n ,
A - D(6l ,

6 2 , -,
e n). (16.2)

The determination of the primitive characteristics of ll is

accomplished by combining the following important facts. 21

1. Symmetry. Each element S of U is conjugate to a prin-

cipal element E, (16.1). Hence it suffices to determine the

characteristic X of a continuous representation of ll for such

a principal element. E goes over into a conjugate transforma-

tion within ll on permuting the ev : hence X is a continuous

symmetric function of the angles wv and is of period 2?r in each

of them.

2. Arithmetic Properties. The principal elements constitute

an Abelian sub-group of U
;
on compounding two such elements

,
E' the angles a>v ,

<*> are added. The normal co-ordinates

yk in representation space 91 can therefore be chosen in such a

way that the principal elements correspond to principal trans-

formations

E k-
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indeed, we have shown in I, 5, that any commutative system
of unitary correspondences can be brought simultaneously into

diagonal form. On compounding two principal elements the

condition that be a representation is expressed by the functional

equation

p(a) ly o> 2 , -)p(>i o>2, )
=

p(aj l + oii, a) 2 + <*4
' '

')

for each of the multipliers p = p k . The auxiliary theorem then

tells us that each pk is of the form

e(h^^ + + A Mo> n),

where the constants h are integers. The characteristic of the

representation is the sum of these p k ;
hence X is a finite Fourier

series in the arguments to with integral non-negative coefficients.

The "
weights

"
of a representation are the sets of exponents

(A!, A 2| ',
hn )

of each term

+ + h nw n )
= *>$' - &

which actually appears in X. The term (h lt
A 2 , ,

hn )
is said

to be
"
higher'* than (h(, h'2 , ,

h'n )
if the first non-vanishing

difference A x h\, 4i 2 h'%, is positive.

3. Orthogonality. For all primitive characteristics X the

integral

XAAdoi, - dw n

must have the value
2n In

V=
{

-

{AArfoi!-
- dwn . (16.3)

These orthogonality relations suggest that we introduce the

quantities = A X in place of the characteristics X
; they

are also finite Fourier series, but they are anti-symmetric functions

of the angles co instead of symmetric ones. h l9 k
2t ,

h n being

integers arranged in decreasing order

we construct the
(t
elemental sum M

f(*i, A2 , -,
A n )

= 2: ^(A^ + A2c^ 2 + + Anco n ), (16.5)

i.e. the alternating sum over the permutations of the arguments
<JD

;
the term which we have written down is the highest one

in the sum. Every alternating Fourier series is a linear aggregate
of such elemental sums

;
since the coefficients of these sums are
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integers, and in particular that of the
"
highest

"
term is 1,

every alternating Fourier series, such as
,
with integral co-

efficients can be expressed as a linear aggregate of the form

t = c- (A 1( h t , ) + '

S(h\, /4 )+ (16.6)

with integral coefficients c
t c', . Let this expansion be

arranged in decreasing order, i.e. in such a way that the set

(/*!, h2y )
of exponents is higher than (h[, ti>>,

*

),
etc.

;

(Aj, A 2? )
is then the highest term in f . A is itself an elemental

sum, namely
A = f(n

-
1, n - 2,

- -

, 1, 0).

Hence if the highest term in X has exponents flj /2 , ,
we have

in the following the numbers
/,-

and h
t are always in the relation

(16.7) with one another.

We denote integration with respect to all the angles of

rotation from to 2-77 by a single integral sign and write dco

for dajdwz daj n . We now calculaten .

f ?(A,, h z ,

the h and the h
f

are arranged in decreasing order in accordance
with (16.4). Consequently no permutation of the h can coincide

with a permutation of the h' unless

*i =O =
J4, ',& = *;; (16.8)

the integral of each of the (n !
)

2 terms in the product

is therefore unless (16.8) holds. In this latter case those n !

terms, for which the permutation of the h is the same as that

of the A', each contribute (2?r)
n to the integral and all others

contribute
;
hence

n!(27r)
w

according as (16.8) holds or not. Applying this in particular
to the elemental sum A, we find

=: V = w!(27r)
n

.

On setting the expansion (16.6) in the equation

- V
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we find
\c\

2
-f- \c'\

z
-|-

= 1. Since the c
}

c'
y

are non-

vanishing integers only the first term can appear in (16.6), and
we must have c 1 or 1, and since the coefficient of the

highest term of (as of X) must be positive we are restricted to

the first alternative c=\. We have thus shown that every

primitive characteristic is of the form

(16.9)

where the hi are integers arranged in decreasing order : h
1 > h2 > .

The function defined by (16.9) is a finite Fourier series with

the highest term (flt /2 , , fn ) ;
the coefficient of this term, its

multiplicity, is 1.

4. Completeness. The last question to be answered asks

whether every function of the form (16.9) is conversely the

characteristic of some irreducible representation of u or not.

Our explicit algebraic construction allows us to answer this

question in the affirmative. To show this we first note that the

representation of order / arising from the symmetry pattern
with (at most n) raws of lengths flt /2 , , fn has as highest

weight (/!, /2 , , fn ) ;
this can be seen immediately by con-

sidering the representation as generated by alternation from
the product of n vectors, the first of which occurs /x times as

a factor, the second /2 ,
etc. (as in the simple case at the beginning

of 15). The / are here any integers satisfying the conditions

On dividing the transformation corresponding to the arbitrary
element S of U in this representation by the /

th
power of the

determinant of 5 (/ being any fixed non-negative integer) the

highest weight of the resulting transformation is (/x /,

A I,
' '

', fn 1) !
this simple device thus enables us to dis-

pense with the restriction fn ^ 0. We have thus proved that

all irreducible unitary representations of the unitary group U n

are obtainable by completely reducing the representations (u)-f for

/== 0, 1, 2, into their irreducible constituents and multiplying

by the \-dimensional representations

5->(det. S)
1

[1
=

0, 1, 2,
-

].

We have further shown that the characteristic of the irreducible

representation )(/,, /2 , , /) of order f of u, which is gener-
ated by the symmetry pattern P(fi, /2 , *, /), is given by equation

(16.9).
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We could also have obtained this last result with the more
transcendental method of proof employed in steps 1 to 3. If

we are operating in the continuum of all complex numbers
rather than an arbitrary field the proof of the completeness of

the irreducible representations of a finite group can be formulated

in such a way that it can be taken over immediately for the case

of a closed continuous group with the aid of the theory of integral

equations. The particular application of this general group-
theoretic completeness theorem to the group b 2 of rotations of

a circle into itself yields the completeness of the Fourier orthog-
onal system eim* (m = 0, 1, 2, ).

Its application to

the closed group u n yields the following two facts : (1) Every
expression of the form (16.9) is in fact a primitive characteristic.

For if it were not it would be a non-vanishing function of position
on the group manifold in fact, a class function whose Fourier

coefficient with respect to each irreducible representation
vanishes

;
it is indeed orthogonal to all other functions of the

form (16.9). (2) We further find that the functions (16.9)
constitute a complete set of orthogonal functions for symmetric
periodic functions of a) l} o> 2 , ,

o>n ;
this result is of no particular

interest, as it is a consequence of the completeness of Fourier's

orthogonal system in one dimension. Our general considerations

(1) to (4) yielded so many properties of primitive characteristics

that we were able to obtain an explicit expression for them from
these properties alone.

Consequences. The assumption that h n
= fn ^ constitutes

no actual restriction
;

the characteristic is then a symmetric
rational integral function of the of order /. The e are in fact

roots of the characteristic polynomial /(r)
= det (rl S) of

the unitary transformation 5
;

it is therefore possible to express
X rationally and integrally in terms of the coefficients of this

polynomial, and therefore in terms of the coefficients of the

matrix 5. The restriction to the unitary group can then readily
be removed, but we shall not go further into these considerations

here. 22

The dimensionality of the representation X is found by
calculating X for the unit element, all of whose characteristic

numbers ev are 1. On substituting directly in (16.9) we obtain

the indeterminate form 0/0, so we proceed as follows. Take

a) l
=

(n l)o>, a)2
=

(n 2)oj, ,
w n = Oo>

in terms of the single angle co. The determinant in the numerator
of (16.9) is then the alternating sum of the terms obtained from
the product

eih^n
-

l)w) e(h2(n 2)co) e(
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by permutations of the numbers n 1, n 2, , ;
it is

therefore equal to

or to the product of the differences of the expressions ^(/^eo),

e(htf*)), obtained by subtracting any member of the set from

any of the earlier members. On allowing aj -> we have

e^at) e(h&>)
~ iw(hi h2).

The dimensionality N of the representation denoted by
i> /2

' *

', /n) in the above is consequently

N =--
D(h lt

D(n _!,...,!, 0)
(16.10)

Evaluation of the Characters of TT,. Having obtained explicit

expressions for the characteristics of the representations of Un

we now employ the connection between the representations of

TTf and l! n developed in 9 to evaluate the primitive characters

of 777. In equation (9.12) x *s the character and X the char-

acteristic of the irreducible representations of 777 and Un ,
re-

spectively, generated by the symmetry pattern P(flt /2 , ) ;

in particular we must put X if the pattern has more than

n rows. The sum is extended over all possible symmetry
patterns P with /fields. The expression (16.9) for X then allows

us to enunciate the following rule for the evaluation of x :

XM, (iJ*
' '

') (16.11)

denote the value of the character of the irreducible representation

!)(/!, /2 , )
of 777, which is generated by the symmetry pattern

<P(/i, /2 , ),
for an element 5 belonging to the class I = (ifa ).

Choose an arbitrary positive integer n and construct the sums
a

i> 2j
' ' "

of powers of n independent variables e lf s 2 ,
, e n and

the product Dfa, 6 2 , ,
e n ) of their differences. The term (16.11)

is then the coefficient of the term e}
1

e$ e" [A t
=

/, + (n i)]

in the expansion of

Z>(e lf
e lf

-

-,en)-c7V4-
-

. (16.12)

We here assume that the pattern P has at most n rows
;
hence

if we wish to obtain all primitive characters of TT/ we must choose

n ;>/. The rule shows that the components of the characters

are integers.

This result was obtained by Frobenius in a purely algebraic

manner, without introducing the continuous group u.
M But
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I believe that the real reason for the rule comes to light only
when we consider this connection between the groups TT/ and
Un in particular, it enables us to understand why a second

integer n in addition to /is involved.

The dimensionality g of t)(/lf /2 , )
is obtained by substitut-

ing the argument s = I ; i l
=

/, i2
= i 3

= in the

character x- Formula (9.12) is then

where the sum is extended over all patterns P(]\, /2 ,

' *

*)
Since

al is the characteristic of the n-dimensional representation
C : 5 -> 5 of the group U by itself, this merely means that in

the complete reduction of (c)f the irreducible representation

$ *tK/i> /2
" '

") Appears exactly g times, as we already know.
On substituting the explicit expression (16.9) for X we obtain

g is accordingly equal to the coefficient of e^e** e" in the

expansion of the product on the left-hand side. The term

is* 1

2*
' ' '

n"
^n t 'ie expansion of the determinant must

be multiplied by the term c
'

J ' Ai"~*i h*-ki

of a{ in order to obtain a contribution to the term e^e*
1 * * *

of the product. (k l}
k

2j ,
k n )

here run through the per-
mutations of n 1, , 1, and g is accordingly equal to the

alternating sum

Z' /i 7 \ I / 7 7 N I

<*)

over these permutations, or equal to the determinant

!

- n+ 1)!'
'

(A- 1)!' h\

1) (*
- n + 2),

The rows of this determinant consist, on reading from right to

left, of polynomials in h of degrees 0, 1, , (n 1) with highest
coefficient 1. The determinant is therefore

n~ l
I-

,
h ll

, A*,
1

|
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and we finally obtain the simple formula

g= -f\D(h,,h,,
h n \

(16.13)

n is to be taken at least as large as the number of rows in the

pattern P(/i, /2 , ) ;
the reader should convince himself by

direct calculation that the value of (16.13) remains unchanged
on replacing n by n + 1.

Frobcnius' rule for the character and this formula for the

dimensionality are vastly superior to (14.7) for purposes of

practical evaluation.

As an example, we carry through the computations for the

case of four electrons
;

the results are given in the table below.

The group 7r 4 contains twenty-four elements which are divided

into five classes of conjugates ;
each of these classes is designated

in the second column of the table by the values
(t',i"a )

as-

sociated with it. The first column contains the number of

elements in each of these classes, and the sign + or indicates

whether the class consists of even or odd permutations. Each

of the five remaining columns contains the values of a primitive
character for the classes in whose row they stand. The symmetry

pattern to which each of these characters belongs is indicated at

the head of the column by the numbers fl9 /2 ,

of elements in

its rows. The first and the last of these columns may be filled in

immediately, and the second and third with the aid of Frobenius'

rule. The fourth is then obtained from the second on noting

that its symmetry pattern is the dual of that of 2
;
we need

then merely to replace the values in the second column by their

negative for the (-)-classcs. Since patterns 2 and 3 contain

but two rows we may take n = 2. Hence on writing x, y in

place of 6j, 2 wc havc nicrcly to find the coefficients of x*y (for

the column 31) and #3
y
2

(for the column 22) in the following

polynomials :

(
X -y)(X + y)\

(x
-

y)(x + y)
2
(*

2 + y
2
)
=

(* + y)(x*
-

y
2
)(*

2 + y
2
)

=
(x + y)(*

4 -
.V

4

),

(x
-

y)(*
2 + y

2
)

2
,

(x
-

y)(x + yX*
3 + y

3
)
=

(*
2 -

y
2
)(*

3 + y
3
),

The dimensionalities of the five irreducible representations are

contained in the first row
; they are 1, 3, 2, 3, 1. The verification

of the orthogonality relations is left to the reader.
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17. Calculation of Volume on u

Consider the line elements going out from the unit point f

on the group manifold U, i.e. the infinitesimal unitary trans-

formations 85
\\8s*p\\.

We may take as the real components

of this
"
vector

"
the n quantities

-
. Ss^ and the real and

imaginary parts of the n(n l)/2 quantities 8sa/3 (a < jS) ;
the

total number of components is thus n2
,
which is therefore the

dimensionality of the group manifold it. No
4
w in a linear algebra

of this kind we may replace any two real quantities a, b by the

complex quantities a + ib, a + ib obtained from them by
a simple linear substitution

;
we may therefore replace the

real and imaginary parts of 8^3 (a < 18) by S^ag itself and

Ssa/g Ss/3*.

On transporting such an infinitesimal vector to the point
5 on the group manifold by a left-translation its terminus goes
into the point 5 + dS = 5(1 + 85), d5 = 5 85

;
we must

therefore consider the infinitesimal element 85 = S~ ldS as the
"
vector

"
which leads from 5 to 5 + dS. Our definition of

volume on the group manifold [III, 12] consisted in the

following : the parallelepiped defined by n2 vectors 85 leading
from the fixed point 5 to the neighbouring points S + dS has
as volume the absolute value of the determinant formed from the

components of the n2 vectors 85. In accordance with the above
remarks we may take as components of the vector 85 =

\\8saLp\\

the totality of coefficients 8j
a/3

themselves.

Any 5 can be expressed in the form

5 - (17.1)

where E is a principal (diagonal) element of U and U is unitary.
5 is unchanged on multiplying U on the right by any principal
element. We employ a geometrical terminology which will
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allow us to visualize our procedure by means of an analogy.
Two elements U, U' of it which are right-equivalent with respect
to the group of principal elements : U 1 = UE

y
will be said to

"
lie on the same vertical [/]." From the n2-dimensional mani-

fold it we obtain by projection the (n
2

n) -dimensional mani-

fold [it]
of verticals [U] on considering all points of u which

belong to the same vertical to be coincident. This process of

identifying equivalent elements was described in general in the

beginning of Chapter III we had, in fact, already met it in I,

1, in the special case of projection in affine space. We may now
consider U in (17.1) merely as a representative element of the

vertical [U] ;
on allowing [U] to run through the entire mani-

fold
[it]

and the angles o>, of E :

E =

e(a> 2)

to vary independently over the complete range ^ aj < 2n
the element 5 defined by (17.1) describes the manifold ll exactly
n ! times.

The vector 8C7 = U~ ldU leads from the point U of the vertical

[U] to the neighbouring point U -f- dU of the vertical [U + dU\.
The totality of all points on [C7 -f dU] which are in the neigh-
bourhood of U is given by expressions of the form

(U + dU)(l + BE) = U + (dU + U 8E)

where SE is an arbitrary infinitesimal principal element with

coefficients i 8wv on the principal diagonal ;
the corresponding

vectors are S[7 = 8[7 + 8E. Since the terms in the. principal

diagonal of 8C7 are pure imaginary, E may be uniquely deter-

mined in such a way that all terms in the principal diagonal of

8C7 vanish
;
we call this transition from [U] to [U + dU] the

"
horizontal transition from C7." The transition from some other

point UE of the vertical [U] to the point (U + dU)E of [U + dU]
is accomplished by means of the vector

JS. (17.2)

That this linear transformation (17.2) determined by E, which
sends 8U into 8' [7, is unimodular follows from our general re-

marks concerning closed continuous groups and can in this

case be readily verified by direct computation. Naturally this

Pure Mathematical Physics



388 THE SYMMETRIC PERMUTATION GROUP

same equation holds for the horizontal transitions &[/, &'U from

[7, UE respectively :

&'U = E- l -&U-E. (17.3)

n2 n horizontal vectors 8t7 leading out from U determine an
infinitesimal

"
parallelogram

" whose content is measured by
the absolute value of the determinant of the n 2 n components
Swa/s (a =t= ]8)

of the various vectors 8f7. On allowing each point
U on the periphery of the parallelogram to describe the vertical

\U] we obtain a tube whose horizontal sections are parallelo-

grams ;
its projection on [u] is the original element of volume,

the
"
parallelogram

"
^defined by the S/. Since the linear

transformation (17.3), S/7->S'(/, is unimodular, the content of

each horizontal section is the same, and may therefore be con-

sidered as the content of the volume element on [u].

We now examine the variations in [U] and E in (17.1) when
S goes over into 5 + dS. We have

SU - UE
and therefore

dS-U + S- dU = dU +/ dE.

On multiplying both sides of this equation by U~ lS~ l = E~ l U~ l

we find

U~ l 85 - U -I- SU = E~ l 8U E + 8

or

S'S = f/- 1 85 U - {E~
l 8/7 /i - 8[/} + 8/{. (17.4)

The components of the matrix contained in parentheses arc

We now define a parallelepiped at 5 which shall serve as a

volume element in the following manner : n2 n of the n2

sides 85 are obtained from (17.4) on allowing the angles of

rotation to remain fixed, i.e. 8E 0, and drawing n2 n hori-

zontal vectors 8f/ from the point U to form a volume element

of magnitude d[U] on [u] ;
the remaining n vectors 8S are then

chosen in such a way that for each of them one and only one of

the angles o> r changes by dw, and [U] remains unchanged. The

corresponding n 2 vectors 8'S define, in accordance with (17.4),

an element of volume of magnitude

r--
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Since the linear transformation 85 -> 8'5 = U~l 85 U is uni-

modular this volume is equal to that of the element defined by
the 85 themselves. Since e = 1/e the product II in (17.5) can

be written

,)(?, e,)

8,6,

ej(ea
- IJ = A

The final result is : Tta volume element described by S on allowing

[U] in (17.1) to describe an infinitesimal volume element of mag-
nitude d[U] on [u] and on allowing the angles of rotation wv to vary

by da>, has the magnitude

A 5 d^dwt da>n -d[U]. (17.6)

On integrating with respect to d[U] over [u] we obtain the

theorem, already 'applied in the preceding section, concerning
the magnitude of that portion of ll in which the angles of rotation

have values lying between to, and a*, + d<ov.

These considerations remain valid on restricting ourselves

to the group u of unitary transformations with determinant 1.

The angles of rotation are then subjected to the restriction

0>! + <* + ' * + "n = 0, (17.7)

and the only difference in the result is that the factor da>n in

(17.6) is to be omitted. Condition (17.7) allows us to normalize

the linear form h^^ + + hna)n in the angles of rotation in

such a way that hn = ;
the exponents (hlt

h2 , ,
hn)

in the

weights of the representations of U are then non-negative integers.
It is desirable, however, not to impose this normalization hn = ;

we need then only to remark that only the differences between
the hi are of significance : the irreducible representations

$(fii /2
* '

', /n) f U ^e unchanged on increasing each of the /,

by the same integer. In particular, these considerations justify
the expression used in Chapter III for the volume on the group
manifold of the unimodular unitary group U2 ,

and the results

of the preceding section constitute a direct proof, which is inde-

pendent of the completeness theorem, of the fact that the

representations of U2 denoted by ( constitute a complete set of

inequivalent irreducible representations of U2.

Pure Mathematical Physics



390 THE SYMMETRIC PERMUTATION GROUP

18. Branching Laws

Finally, we show the usefulness of our formulae for the

characters by deriving two simple
"
branching laws

n
from them.

1. Branching law for the Permutation Group.

The irreducible representation of TT/ with the symmetry pattern

P(fi> fz>
' *

") Deduces, on restricting irf to the sub-group TT/ _ ] of

permutations of f 1 things, into the sum of those irreducible

representations of TT/^J associated with the patterns

l> /2

those patterns in which the rows are not arranged in decreasing

length are to be omitted. Each such constituent appears exactly
once. (In words, these patterns are obtained from the original
one by removing a field in turn from the end of each row which
is actually longer than the following one.)

Proof. Let s be a permutation of the numbers 1, 2, ,

/I belonging to the class (i l 1, z' 2 ,
f 3 ,

'

).
Considered as a

permutation of the/numbers 1, 2, ,/, s leaves the last number
fixed

;
the number of one-term cycles is thus increased by 1,

and s, considered as an element of 777. belongs to the class

("*!>
2
*2>

Z 3>
" "

")
In the expansion

A o^-'aj = Za^ . . . e'' e'
(18.1)

we have as the coefficients of those terms for which

**,', =0 or x/'./v-W (
18 - 2

)

according as any of the signs ^ in the above inequalities is

actually = or not. Xf ls ^ie primitive character of 7r/rl belong-

ing to the symmetry pattern P(/i, /2, ).
On the other hand,

the coefficient of ej
1

2* [h l > h2 > ]
in A a\

l

a% is

equal to the character Xfj2--(s)
f ^ie representation of TT/

with pattern P(/,, /2 , ).
Hence on multiplying (18.1) with

(T!
= B 1 + 6 2 + ' ' ' + n we find

Xfi/2 '
(
5
)
^ ahi-L ht, *,- + a

hi, Ai-1,*,+' ' '

Our branching law follows from this result and (18.2). The

branching law leads to a recurrence formula for the dimension-

alities g(fl9 f2 , )
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2. Branching law for cn .

On restricting Cn to the sub-group of linear transformations of
an (n 1)-dimensional sub-space the irreducible representation

(fiy /2>
" "

") f cn reduces into the sum of all those representations

(/ii /2,
' '

') f Cn-i f r which

A^/^A^/^- -^/^^A; (18.3)

each of these constituents appears exactly once.

Proof. The linear transformations 5 of the sub-space c n_! :

xn are simply isomorphic to those linear transformations

5 of the variables xl9 #2 ,

* '

", xn m which xn -> xn . Hence e w

is to be replaced by 1 in the characteristic (16.9). The denom-
inator is then

D(e lf e 2 ,

- -

-, _>) (6l
-

l)(ea -!) (_> - 1),

as can be seen by subtracting the last column of D(e lt e 2 , ,

s n _!, 1) from each of the previous ones and factoring the resulting

(n l)-row determinant. In order to divide the determinant

in the numerator by the factor (Sj I)(e 3 !) ( n -i 1)

we subtract the second column from the first, the third from the

second, ,
and fmally the nth from the (n l)

8t
. The last

row then is 0, 0, , 0, 1
;

the determinant is thus reduced to

a determinant of order (n 1). Now divide each element in

the yth row by ev 1 in accordance with

The result is that we then have in the numerator the determinant

But this is the sum of all (n 1) -rowed determinants of the form

|e*'i, e*', , e*'"-i|,

AI > A; ^ h, > h'i ^ A 3 > >/Ci ^ A n (18.4)

On subtracting n 1 from h ly n 2 from h[ and A 2 , *,

from h'n_i and A n ,
in order to obtain the numbers / [(16.7)], the

inequalities (18.4) become the inequalities (18.3) and our theorem

is proved.
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Proof of an Inequality

(Page 77.)

IN order to prove the inequality stated on page 77 we must
show that any continuous and differentiable function 0, which

is defined for all values of the real variable #, satisfies the

condition

-f- 00 -f OO -f 00

provided, of course, that the integrals involved actually exist.

The Schwarz inequality

employed in Chapter I becomes, on replacing the sums by in-

tegrals or rather each sum by two integrals

Applying this inequality to

i

'

a

by taking

and transforming the integral

d
f

d

]*Tx
into

by partial integration over the range oo, + o, we obtain the

desired relation (*) provided the term #t/n/I,
which is integrated

out, approaches as x -> oo. That this is actually the case

if the two integrals on the right of (*) converge can be seen by
the following indirect proof. Let be any pre-assigned positive

393
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constant and consider a positive value of x for which x
\ *ft(x} |

a > e

2 i
dx ^ j.

The Schwarz inequalityand which is so large that I Ur

dx

then tells us that for x <, x' <> x + -
~"~ ~

x

<;
,
whence

The integral of #2

|
^r

[

a over the range from # to x -\ is then
yc

. 1 e e e 2
"** -v* -
**> & ~7

~ ~~
~I~

4 x x 4

Hence it follows that conversely

imply the inequality
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A Composition Property of Group Characters

(Page 169.)

THE fundamental property of the irreducible representation

,^>
: s -> U(s) which is expressed in the equation

U(st)
- U(s)U(t)

is paralleled by the relation

Proof. If x, JK are two elements of the algebra of the group,
the second of which belongs to the central, and if

x -> X, JK -> F in $),

then Y = -1. The matrix associated with z = AT in .6 is

g

-X and its trace is :

g g

On setting

we find

r*(*) y(0 X(st)
-= zx(s) y(t) X(s) x (t).

*,t S *, t

Since y(t) depends only on the class of conjugate elements to

which t belongs we may replace

X(st) by I27x(*'-
1
fr)

on the left-hand side of the previous equation. Then the co-

efficient of x(s)y(t) on either side of the equation depends only
on the class to which the element / belongs, and since x(s) is an

395
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arbitrary function, y(t) an arbitrary class function, the assertion

(*) follows from the fact that the two coefficients must agree.
We have omitted mention of this equation (*) in the text

in order not to interrupt the systematic development of the

theory of representations, which is completely described by the

orthogonality relations and the completeness theorem.
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A Theorem Concerning Non-degenerate Anti-

symmetric Bilinear Forms

(Page 274.)

WE consider the given non-degenerate anti-symmetric bi-linear

form

as the
"
anti-symmetric product

"
[jt)j

of the two vectors

(A*,, ,r 2 ,

* *

,
x f\ and

t) (y k). Let Cj be any non-vanishing
vector

;
then by assumption [t^j] cannot vanish identically in

jc,
and consequently a second vector e 2 can be found such that

[tVa] 1- Tlie simultaneous equations

then have/ 2 linearly independent solutions e 3> , c/. These
vectors are furthermore such that no linear dependence can

exist between them and C 1? C 2 ,
for if

it follows on building the anti-symmetric products [c^]
^^ ^2

[^2?]
~

^i that ^i
~ ^2 ~ 0. We may therefore choose

c i> ?2> ', C/ as a co-ordinate system, i.e. as a basis from which
all vectors may be constructed. Let the anti-symmetric pro-
duct be expressed in terms of the components r] k of

, t)
in

this new co-ordinate system by

i, k = I

The manner in which the new fundamental vectors were deter-

mined requires that of the coefficients yik
=

[e te fc ]

yii
=

0, y l2
= 1

; y 13
=

0,
-

, yir 0,

721
=

1, V22 = ; 723
=

0, , y2/
= 0.

397
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In consequence of the anti-symmetry all ytl , yi2 with i = 3, , /
vanish, and the matrix of the y ijb

is completely reduced into the

2-rowed square sub-matrix

1

, ,

1

and an (/ 2)-dimensional anti-symmetric matrix. Mathe-
matical induction with respect to the dimensionality /yields the

desired theorem that / is necessarily even and that the original
form can be transformed into

(^i^a 2*11) + (^37?4 4^3) + * * *

(//2 terms)

by an appropriate linear transformation.
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OPERATIONAL SYMBOLS

The number refers to the page on which the symbol is defined

-> with ... is associated ... 110, 114.

-3 is contained in 290.

x conjugate complex of x 15.
*

transposition: for operators 13, symmetry quantities 352,

symmetry patterns 361.

~ Hermitian conjugate : for operators 17, elements of an

algebra 167.

a(s)
= a(s~

l

)
296.

o contragredient matrix 123, representation 123.

c equivalent as correspondences of the ray field 21.

~ transforms as 145.

( )
scalar product 16, 32.

[ ]
vector product (in 3-dimcnsional space) 27

;
commutator

[HA] - \(HA - AH) 264.
L

temporal mean value 88.

for vectors 90, vector spaces 90, correspondences 91,

representations 126, groups 127, algebras and their

elements 333.

X multiplication of representations of two groups 127.

+ addition of representations 113.

$ transition from
\)

to $ 287.

tj

transition from $ to
J)

290.

409

Pure Mathematical Physics



LETTERS HAVING A FIXED SIGNIFICANCE

The number refers to the page on which the quantity is defined

LATIN

c velocity of light ;
a Young symmetry operator 359.

e primitive idempotent element (generating unit 291) ;
e-

charge of the electron.

e(x)
= eix .

(EX) Ev ,
E z )

= ( electric field strength 99.

E energy level 44.

/ number of electrons, order of a tensor 139, 281.

fa 4-vector potential multiplied by e/ch 214.

faft curlof/,(^
=

F action of the electro-magnetic field 215.

F(i lj
z'2 ,

. .
., if) tensor 139, 281.

g dimensionality of a group representation 120, Lande g-

factor 204, 207.

h Planck's quantum of action divided by 2?r 51, order of a

finite group 118.

H energy 51.

(HXJ HVJ Hz )
= magnetic field strength 99.

/ signature 188.

y, y inner quantum number 189, 190.

Jn total energy-momentum vector 220.

k auxiliary quantum number 228.

/, L azimuthal quantum number 64, 185, 194 for s, p, d, /, g,

. . . terms / = 0, 1, 2, 3, 4, . . . .

(LX) L v ,
Lz ) S orbital moment of momentum 63.

m magnetic quantum number 64, 193, multiplicity of a re-

presentation 321, 350
; (= p) mass of the electron.

m mc\h.

M, M' action of the material field 211.

(MXJ My, Mz )
= 501 total moment of momentum 179, 187.

n dimensionality of a vector space 1
; principal quantum

number 69.

410
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LATIN

p, q canonically conjugate variables 94, a permutation in the

rows, columns of a symmetry pattern 359.

(Px, Pv, Pz) P linear momentum of a particle 51.

P symmetry pattern 358.

(qx , qv , qz) = q electric dipole moment 83.

r distance from centre.

5 element of a group ; spin quantum number 206.

(sxt sv ,
sz)
= 3 electric current density 218, s* charge-current
4-vector 214.

(Sx ,
Sv , S,)

= @ spin 178, 203.

5.=
1

1

1

1

-t
,5,= ,5,=

1

1

148.

t* energy-momentum tensor 218.

T interchange of fa, ij/2 and ^r/, ^2

'

149.

v valence 369.

W perturbation energy 86, total action 216.

#o xi X2 xs or tx y ^co-ordinates of space time
(t XQ 98, or ct XQ

211).

GERMAN. (For 3-dimensional vectors see their components
under Latin letters.)

C = cn group of (unimodular) linear transformations in n dimen-

sions 128.

(t)f representation of c whose substratum is the tensors of

order/ 125.

gv 3)^(0 2;) representation of z;th degree of C2 or U 2
'^ b 3

128, 142.

bn orthogonal group in n dimensions 142
;

b'n same but in-

cluding improper rotations 143.

3)(m) l-dimensional representation of rotation group b 2 141.

e i,
e 2 >

en co-ordinate system in vector space 2.

($ unitary representation of the rotation group induced in

the function space of ^(x y z) 143.

abstract group 114.g
fa

9!R

conjugation 118.

mean value 158.

31 representation of the rotation group induced in system

space 187.

p, ty invariant sub-space of t, 9R/ respectively 287, 282.
n

t an algebra considered as a vector space 286, t = r =
tj
W

290, 350.
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GERMAN

91 vector space |, ffi corresponding space of tensors of order/,

[ffl] space of the symmetric tensors, {9?/} space of the

anti-symmetric tensors, 239, 242.

Wt, 3L system space of electron translation, spin 196.

ta left-translation 116.

II Un (unimodular) unitary group in n dimensions 139.

S3 ray representation giving rise to algebra of complex
quaternions 182.

j vector in n dimensional vector space 1.

GREEK

a e2/ch fine structure constant 216.

8ik Kronecker symbol = 1 or according as i = k or i =J= k 17.
+ <

8(#) Dirac 8-function (= except for x = and \$(x)dx
=

1)

255. -e

85
= 1 according as s is an even or an odd permutation 121.

8 signature 201.

d 2
<>
2

<>
2

A =
5 -\
---

j

--r Laplace's operator a 52. ,
2

()y
2 D02

e generating element of a right- and left-invariant sub-space
311.

6, <f> polar co-ordinates 60.

ft(= m) mass of the electron.

v frequency 50.

o = j~ 9
Larmor factor unit of Zeeman separation.

rr = 7Tf symmetric group of permutations of /objects 121.

p electric charge density 218, an algebra 304.

<f>a electro-magnetic 4-vector potential 98.

</r
vector defining the state of the material field 49.

X, X group characteristics, 150, 151.

aj angle of rotation 151.
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The numbers refer to pages of the text, those in boldface to the pages ivhere the

concepts introduced in boldface are defined

Abelian group 118, its unitary irreduc-

ible representations 140, in ray space
182, quantum kinematics as A. g.

of rotations 272 ff. A. system of

forms 25.

Absorption of photon 44, quantum
theory of a. 107, 224, 261, a. lines 45.

Action of material field 211, of electro-

magnetic field 215, total 216, 222.

Adaptation of co-ordinate system to

sub -space 3.

Addition of vectors
,

of correspond-
ences 6, of matrices 7, of repre-
sentations 126, of elements of an

algebra 165, 303, of numbers of a

field 302, direct sum of algebras 311.

Afrine correspondence 5, see Corre-

spondence, linear
;

a. geometry I ff.,

1 12.

Algebra, general concept 303, of group
166, 181, 286, simple 311, 113,

semi-simple 316, order of a. 304,
modulus or principal unit 1 68, 304,
basal units 1 68, 304, division a.

(= field) 304, 316, central of a. 167,

311, invariant sub-a. 167, 280,

generating unit of s.-a. 168, 291,
direct sum 311, direct product 333,
reduction into simple matric a. 167.

309 ff., 315 ; representation of a. 166,

304 ff., regular representation 289,
complete reduction of representation
306 ;

a. of complex quaternions 182,
of linear transformations 307, of

symmetric transformations 282, 332,
its enveloping a. 284, reduction of

a. of linear transformations 307 ff.

Alkali spectrum 85, 86, 202, doublets
in 204. with anomalous Zeeman
effect 205.

Alkaline earth spectrum 207, 246.

Alternation 358.

Alternation law 207, 370.

Atom, Rutherford's model xiii, Bohr's

theory of a. 43, radiation on classical

and Bohr theories 44, on quantum
theory 104 ff., 256 ff., Hund's vector

model of a. 191, 244 ; see Spectrum.

Automorphism 115, automorphic corre-

spondence of group 134,

Auxiliary quantum number, see under

Quantum number.

Azimuthal quantum number, see under

Quantum number.

Balmer 45.

Bessel's inequality 33, for system of

representations 169.

Black body radiation 41, 104, 256.

Bohr, H. 39.

Bohr magneton 66, 205.

Bohr, N. xiii, 43, 95, 105, 236, 245.

Boltzmann 108.

Born 48, 74.

Bose 50.

Bounded Hermitian form 39.

Brackett 46.

Branching rule, for spectra 207, for

linear and permutation groups 390 ff.

de Broglie, L. 48, 53, 211, 220.

Burnside's theorem 153.

Canonical variable 52, 94, c. trans-

formation 96. in quantum mechanics

98, c. aggregate 79, c. basis for

rotations in ray space 274.

Central, of group 118, of algebra 167,

313.
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Character, group or group character-

istic 150, 327, 395, of unitary re-

presentation 156, primitive c. 150,

150, behaviour on addition and

multiplication 151, oithogonality pro-

perties 156, 159 ft., 317. For char-

acters of special groups ste under

qualifying adjective.

Character of element of algebra 295.

Characteristic number of Hermitian form
or operator 21, 35, of unitary form 26,

multiplicity of c. n. 22, 26, of energy
56, 80 ;

characteristic vector or func-

tion 21, 35, of wave equation 56, 80
;

c. space 22, of energy 80, 192, of

moment of momentum 189, 192.

Class of conjugate elements 118, in

symmetric permutation group 328 ;

c. function 150, 156, as element in

central of group algebra 169.

Classical mechanics compared with

quantum mechanics xiii, 73, 81, 94,

190,
"

c." combination principle 47,
82.

Clebsch-Gordan series 128, 163, 190,

371, as quantum rule for composi-
tion of moment of momentum 190,
as valence rule 371.

Closed shell 86, 245.

Cogredient transformation 5.

Collision phenomena 46, 70 ff.

Combination principle, Ritz-Rydberg
44, 48, 82,

"
classical

"
47, 82.

Commutation rules, Heisenberg's 94,

274, interpretation of 275, wave

equation derived from c. r. 277 ff.,

c. r. for infinitesimal rotations 178,
for moment of momentum 179, for

spin 227, in second quantization 249,
for Maxwell- Dirac equations 254 ff.

Commutative field 302, c. group 118
;

c. operators transformed simultane

ously to principal axes 25.

Commutator 177, 264, 267.'

Commutator form 273.

Completeness of 'unitary-orthogonal sys
tem of functions 3, of spherica
harmonics 62, on group manifolc

170, c. of system of unitary repre
sentations 140, 159, 170, 305, 318
of product representation 164 ;

com
plete system of orthogonal vectors in

3-space 257.

Complete reduction of correspondences
or representation 9, 122, sometime

equivalent to reduction 18, 123, 136

292. 301, 306, 308, of product re-

presentation 140, of (Sf x (&g 128,

190, uniqueness 136, 156, c. r. of

system space with respect to energy
80, of representation induced in

system space by t>8 188, of group
space 294, of tensor space 301, of
an algebra into simple matric algebras
167, 309 ff., 315.

Composition of physical systems 91,
behaviour of energy on c. 92, 193, of
moment of momentum 190, c. of

equivalent individuals 239, 241 ,
under

Pauli exclusion principle 244, method
of c. compared with second quantiza-
tion 248 ; c. of transformations 6,

no, see Multiplication.

Composition series, of sub-groups 132,
of sub-spaces 122, 135.

^ompton effect 224.

London 74.

Congruent modulo sub-space 4.

Conjugate of element of group 118,
for permutation group 328, of ele-

ment of algebra 167.

Conjugation 118.

Conservation law, for electricity 214 ff.,

energy 82, 218, 220, momentum 218,

220, moment of momentum 188,

221, Dirac's c. 1. 227, of quantum
field 264 ff.

Contact transformations 96.

Contragredient transformation 12, re-

presentation 123.

Contravariant vector 13.

Convex region 79.

Co-ordinate system, in vector space 2,

adapted to sub-space 3, transforma-
tion of c. s. 4, normal c. s. 16,
21, Heisenberg's c. s. 80, in special

relativity 147, in general relativity

219.

Correspondence or transformation,

general 110, identical 110, inverse
in, product in, isomorphic 112,

automorphic 134, similarity 283 ;

linear 5 ff., 21, = projection 282,
in function space 35, trace 11, ISO,
dual 13, 123, contragredient 12,
Hermitian 18, unitary 16, infinites-

imal unitary 28 ff., rotation of ray
space 20, X -multiplication 90, re-

duction and complete reduction 9,
irreducible system of 1. c. 122, 153 ff.,

symmetric c. in tensor space 282.
For special groups of correspondences
see under qualifying adjective.
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Correspondence principle 95.

Coupling, Russell-Saunders or (j/) 206,

(;>')
206.

Courant 40.

Covariant linear quantity 173, in

quantum mechanics 197 ;
c. vector

13-

Cycle of a permutation 328.

Cyclic group 117.

Davisson 50, 53, 70.

Decomposition, see Complete reduction,
of space 3, 122, of dual space 14,

in unitary geometry 18, into char-

acteristic spaces, 22.

Degenerate system 83, perturbation
of 86, accidental degeneracy 192.

Degree of a representation 120.

8-function 36, 255.

Derivative of operator 94.

Dimensionality of space 2, 3, of a

representation 120.

Dirac 109, 210, 211, 217, 225, 255, 260,

262, 357.

Dirac's relativistically invariant equa-
tions for electron 213, 218, 225, in

central field 227 ff., quantization of

253 ff.
;

D. theory of proton 262

Directional quantization 67, 75, 205.

Dispersion 53, 224,

Division algebra ( field) 304, 316.

Double tensor 347.

Dual space 12, matrix 13, system of

transformations 123, symmetry ele-

ment and representation 352, sym-
metry pattern, 361, 369.

Dynamical variable, represented by
Hermitian form 74, 275, measure-
ment of 74 ff., mean value or ex-

pectation 75, intensity on transition

83, 197, composition 91, totality of

d.v. represented by irreducible system
238 ; d. law 54, 80 ff., 97, 187, 266.

Dynamically independent systems 92.

Effective quantum number, see under

Quantum number.

Einstein 42, 50.

Electric charge, atomicity of 216, posi-
tive and negative 262, e. c. density
and current density 215, conserva-

tion of e. c. 214, 217, e. dipole moment
83, 104, 197.

Electro-magnetic field, effect on charged
particle 98, 213, 222, interaction with
matter 105, 261, equations of 102,

218, quantization 104, 253, action

215.

Electron, de Broglie's equation for e.

53, Schrodinger's 54, in, Dirac's

213, e. beams 50, spin 195, 196,

203, 276, translation 196, in spher-
ically symmetric field 63, 227, nega-
tive energy levels and "

positive e."

225, existence vs. constitution of e.

261, e. and proton 262.

Element, of group 114, of group alge-
bra 166, of algebra 303, idem-

potent e. 1 68, 291, independent 292,
primitive 293, real 295, trace 299,
317, scalar product 299, character

of an e. 295.

Elsasser 74.

Emission, of photon 44, quantum
theory of e. and absorption 107, 224,

261, spontaneous 107, stimulated
108.

Energy, and its operator 51 ff., 80 ff.,

97, 187, 215, e. level 44, 50, in

collision phenomena 70, in perturba-
tion theory 86 ff., on composition 92,
in electro-magnetic field 101, with

spin 215, 220, e. of radiation field

103, 258, e. of simple state 189, IQI,
of system of equivalent individuals

320 ff., 356, of molecule 346, ex-

change e. 322, 342, 346, e. and
momentum 51, 218, 220, conserva-
tion 188, zero-point c. 104, 258, 261,
inertia of e. 221, e. quantum 41.

Enveloping algebra 284, for double ten-

sors 348.

Equality, axioms of 1 1 2.

Equivalence degeneracy 239 ff., 320.

Equivalent individuals, state of system
consisting of e. i. 239 ff., energy 241,

320 ff., 356, quantization 246.

Equivalent systems of linear transforma-
tions 121, e. representations 120,

sub-spaces 135, 283, e. points with

respect to transformation 112, e.

elements with respect to sub-group
118.

Euclidean geometry 15, 112.

Exchange energy 322, 342, 346.

Expectation or mean value of physical

quantity 75, 78, 92.

Exponential function 28, of matrix, 29.
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Factor group 119, 132.

Faithful realization 114.

Ferro-magnetism 347.

Field equations, for electro-magnetic
field 102, 218, for matter 213 ff.,

their quantization 104 ff., 253 ff.

Field, number f. 294, 302, algebraically
closed 294, commutative 302, finite

f. of modulus p 303; ray f. 20,
vector f. 20, point-f. 1 10.

Fine structure, in hydrogen 203, 236
f. s. constant 216.

Form, linear 12, bi-hnear 13, 16, 18,

Hermitian 18, unitary 16, commu-
tator 273, anti-symmetric bi-linear

273, 397-

Fourier coefficient 33, series 33, in-

tegral 39, F. c. or group matrix for

representation 165.

Franck 46, 70, 74.

Frequency 50, Bohr's f. rule 47, 105,

109.

Frobenius 156, 358, 383.

Function space 32, of quadratically

integrable functions 143.

Galois, 132.

P-process 126.

Gamow 74.

Gauge invariance 100, 213, 220, rela-

tion to conservation of electricity 214,

217, role in quantization 256, 271.

Generating function of infinitesimal

canonical transformation 97.

Generating unit 291, independent 292,
in field of complex numbers 295, of

symmetry class of tensors 296.

Geometry, affine or vector iff., 112,
Euclidean 15. 112, unitary 15 ff.,

characterized by group 112.

Gerlach 65, 75.

Germer 50, 53, 70.

-
factor, Lande, 204, 205, 207.

Goudsmit 203.

Group 1 10 ff
,

transformations g. Ill,
abstract 114 ff., isomorphic 115,

automorphic correspondence of g.

115, 134, commutative or Abelian

118, cyclic 117, order of finite g.

118, of element of g. 117, central

118, sub-g. 116, index of sub-g.
118, self-conjugate or invariant

sub-g.
119, 132, factor g. 119, simple 132,
direct product 127, closed continuous
160 ff., Lie theory of continuous g.

175 ff, g. manifold 160 ff., invariant

sub-space of
g. manifold 291 ; realiz-

ation of g. 114, representation of g
120, of sub-g. 127, 334, of direct

product 333, g. matrix 165, algebra
of g. 166, 181, 286. For special

groups, see under qualifying adjectives.

Gurney 74.

Gyro-magnetic effect 205.

Hallwachs 42.

Hamilton 50, 138.

Ilamiltonian equations, in classical

mechanics 96, 98, in quantum mech-
anics 94, in quantum field theory 253.

Heisenberg xiii, 48, 80, 82, 222, 264,

347-

Heisenberg's co-ordinate system 80.

Heisenberg-Pauli fheory of the quantum
field 253 ff.

Heitler 342.

Hellinger 39, 40.

Hermite 18.

Hermitian form or operator 18, non-

degenerate 18, positive definite 18,

unit 15, idempotent 23, in function

space 35, 37, bounded 39, product
of H. f. 20,

- trace 20, characteristic

number 21, 35, transformation to

principal axes for single H. f. 21 ff.,

32, for Abelian system 25 ; II. f.

represents physical quantity 74, 275,
chararteristizes statistical aggregate
79, 239; H. conjugate 17.

Hermitian polynomials 57 ff.

Hertz, G. 46, 70, 74.

Hertz, H. 42.

Hilbert 39.

Hilbert space 32.

Hund's vector model of the atom 191,

244.

Hydrogen atom 45, on Schrodinger's

theory 63 ff., on Dirac's theory 234 ff.,

spectrum 45, 69, fine structure 203,

236.
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Idempotent Hermitian form 23, 37,

independent 23 ;
i. element of an

algebra 168, 291, independent 292,

primitive 293.

Identity correspondence 6, 110, repre-
sentation 121.

Independent, linearly i. vectors 2, i.

idempotent forms 23, idempotent
elements of algebra 292.

Index of sub-group 118.

Infinitesimal unitary transformation 28 ff.,

rotation 27 ff., moment of momentum
induced by i. r. 178, canonical trans-

formation 96, element of continuous

group 160, 177.

Inner quantum number, see under

Quantum number.

Intensity, as measure of probability 49,
i. of dynamical variable on transition

83, 197, of spectral lines 44, 83, 232,
in anomalous Zeeman effect 201.

Interaction between matter and radia-

tion 104 flf., 261.

Interchange, of right and left 225, of

past and future 109, 227, 263.

Invariance, in special relativity, dif-

ficulty for quantum mechanics 54,
Dirac's treatment 210 ff., i. of

quantum field equations 268 ff.
;

-in
sense of general relativity 219, under

change of gauge 100, see Gauge
invariance.

Invariant of transformation group 117,

170, in representation space 171.
classical theory 170 ff.

Invariant sub-space 8, under system
of transformations 122, 135, 282,
left-i. s.-s. in group space 289 ff., left-

and right-i. s.-s. 168, 311, in tensor

space 296 if., significance in quantum
theory 320 ;

i. sub-group 119,
maximal 132.

Inverse correspondence 6, 111, element
of group 114.

Involution 13.

lonization potential 46.

Irreducible invariant sub-space 122, 282,

system of linear transformations, re-

presentation 122, reduction into i.

constituents 122, 135 ; irreducibility= complete irreducibility in unitary
domain 136, 292, 301, for reducible

algebra 305. for algebra of trans-

formations in completely reducible
vector space, 307,

Isomorphic correspondences 112

simply isomorphic groups 115.

Jeans 42, 102, 103

(jj) coupling 206.

Jordan-Holder theorem 131 ff.

Jordan, P. 261, 280.

Kinematically independent systems 92,

190, perturbation of 93.

Kinematics of system determines repre-
sentation in system space 189,

Heisenberg's quantum k. 94 ff., as

Abelian group of rotations 272 ff.,

in second quantization 250, k. of

spin 195, 203, 276.
Klein's Erlanger programme xv, 112.

Laguerre polynomials 70.

Lande, 204, 208.

Laporte's rule 201, 203.

Legendre polynomials and associated

functions 62, with spin 230.

Lenard 42.

Leonardo da Vinci 1 1 2.

Lie 176.

Light, wave and corpuscular nature of

48 ff., 53-

Linear, 1. algebra 303, see Algebra ;

1. correspondence 5, see under Corre-

spondence; -
1. form 12, 1. covariant

quantity 173, 1. projection = 1. cor-

respondence 282, 1. sub-space 2;
1. momentum, see Momentum, linear.

Linear group, complete cn 123, simplest
representations 123 ff., representa-
tion ($/ of c a 128 ff., its ir-

reducibility 299, representation (/, g

131, 1 64 ;
reduction of (c )* equivalent

to reduction of algebra of symmetric
transformations 284 ff., unitary re-

striction immaterial 285, result of
the reduction 301, characteristics

335 ff., relation to characters of

symmetric permutation group 326-
representations of order / 309,

branching law 391.

London 342, 346, 370.

Lorentz group, restricted, obtained from
C 2 147 ff., complete L. g. obtained on

adding reflection 147, positive and

negative transformations 147, and
Dirac's equations 212 ff., transforma-
tion induced in system space 268 ff.

Lyman 45.
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Magnetic quantum number, see under

Quantum number.

Magneto-mechanical anomaly 205.

Magneton, Bohr 66, 205.

Magnitude, absolute, of vector 16, 19.

Mapping no, see Correspondence,
Transformation.

Matric algebra, -simple 168, 313.

Matrix 7, dual or transposed 13, unit

6, addition 7, multiplication 8, re-

duced and completely reduced 9,

transformation of m. 8, norm 11,

trace 11 ; gronp m. 165.

Maxwell's equations 102, 218, quan-
tization of 104 ff., 253, M. action 215.

Mean value or expectation of physical

quantity in pure state 75, 78, 92, in

mixed case 79; m. v. over group
manifold 158.

Measurement of dynamical variable 74 ff

Metric 15.

Millikan 42, 245.

Minkowski, H. 79.

Mixed state 79.

Modulus, of algebra 168, 304, reduc-

tion of 168, 301 ;
of finite field 303,

Molecule, spectrum 191, perturbation

theory and constitution 339 ff., non-

polar bond 342, London formula
for binding energy 346, on taking
account of Coulomb forces 356, val-

ence theory 369 ff.

Moment of momentum of a representa-
tion 179, of D^ 179 ; rn. of m. of phy-
sical system 187, orbital 64, 195,

spin 195, 203, 218, behaviour on

composition 190, conservation 188,

219 ff., 227, reduction of system
space with respect to m. of m. 192,
induced by infinitesimal rotations of

Lorentz transformations 185, 269.

Momentum, linear, and its operator 51,

220, conservation of energy and m.

218, 264 ff.

Moseley's law 69.

Motions, geometrical in, group of 176.

Multiplet 196, 206, 373, as relativis-

tic phenomenon 204, 234, normal
Zeeman effect 101, 193, 198, anom-
alous Zeeman effect 204, 208 ff.,

alkali doublets 204, singlets and

triplets in alkaline earths 207, 246,

multiplicity 321, 350, under Pauli
exclusion principle 352, in 2-dimen-
sional spin 355, 369, multiplicity and
valence 369 ft., branching rule and
alternation law 207, 370.

Multiplication, of vector by number i,

of correspondences and matrices 6 ff.,

of numbers of field 302, of elements
of algebra 165, 303, quaternion m.

138, outer or X -m. of spaces, vectors,

operators 90, 125, of representations
126, direct product of groups 127,

333, of algebras 333, X-m. of repre-
sentations 127 ; scalar m. of vectors

16, of elements of an algebra 299, 317.

v. Neumann 40, 78.

Noether, E. 134.

Normal co-ordinate system 16, in rel-

ativity 147, n. state of atom 45,
n. term order 206.

Number, of field 302, operations on 302 ;

characteristics n. 21.

Operator linear correspondence 6,

Hermitian 18, in function space 35,

representing dynamical variable 55,
considered as 'function of time 81,
derivative of o. 94.

Orbit, in older quantum theory 47,
orbital moment of momentum 64,
195.

Order, of finite group 118, of element
of group 117, of sub-group 118,
of finite algebra 303.

Orthogonal group, see Rotation group ;

o. transformation 16, o. vectors 16.

Orthogonality relations 32, for group
characters 159 ff,, 317, for sym-
metric permutation group 367.

Oscillator 43, 56 ff., 84, black body
radiation as system of o. 102 ff., 258,

quantum mechanical laws of system
of o. 249.

Parseval's equation 33, 35, 162.

Paschen 45, 236.

Paschen-Back effect 208.

Pattern, symmetry, see Symmetry
pattern.

Pauli 77, 203, 211, 244, 264, 347, 351.

Pauli exclusion principle 207, 244 ff.,

and reduction of algebra of sym-
metric transformations 281, 323, 347 ff.,

355, 370 ff.
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Peirce reduction 312.

Periodic system of the elements 69,

242 ff.

Permutation u, reduction into cycles

328, conjugate 328, as operator on
tensor 281.

Permutation group, symmetric 121,
classes 328, elements as symmetry
operators 286, relation to symmetry
class of tensors 286 ff., for arbitrary

P- g- 33 2
>

characters 320, 383 ff.,

relation to characteristics of unitary

group 331, use of characters to

calculate exchange energies 322 ff.,

energy of non-polar bond 346, ex-

plicit theory of representations 358 ff.,

reciprocity theorems 339, branching
law 390.

Perturbation theory 86 ff., for kine-

matically independent systems 93,
for equivalent individuals 321 ff.,

for molecules 339 ff.
; p. energy 86,

for axially symmetric field 192, for

magnetic field 101, 193, 204, 224,
for electric field 101, 224, spin p. 196,
in Dirac theory 224, determines
transition probability 89.

Pfund 46.

Photo-electric effect 42.

Photon 42, 49, 54, 104, 248, 258, 261.

Planck xiii, 41.

Planck's radiation law 41, 108.

Point-field no.

Polynomial, characteristic 11,22; Her-
mitian 57 ff., Legendre 62, with

spin 230, Laguerre 70.

Primitive unit 293, character 150,

symmetry class 358.

Principal unit of algebra 168, 304 ;

p. transformation 128, transforma-

tion of Hermitian forms to p. axes 21,
2S> 3 2 > 39> f r unitary forms 26, 39;

p. quantum number, see under

Quantum number.

Probability, relation to intensity 49,
that a dynamical variable assume a

given value in a pure state 75, in a

mixed state 79, p. density and current

density 50, 2 1 5 ,
2 1 7 ;

transition p. 73,

83, 89, in composite system 90, 93,
for an atom in radiation field 106 ff.

Product, see Multiplication.

Projection, with respect to sub-space 4,

in unitary geometry 18, orthogonal

and unitary-orthogonal 23, linear

p.
= linear correspondence 282.

Proton, Dirac's theory of 262.

Pure state 75, conditions for 77.

Quantization, in the older quantum
theory 47, in Schrodinger's theory
51, 56, in Heisenberg's 93 ff., of

composite system 89, of electro-

magnetic field 104, 253, second 246,
of Maxwell-Dirac field equations
253 ff.

;
directional or space q. 67, 75,

205.

Quantum, of action 41, 51, of energy 41.

Quantum kinematics, Heisenberg's 94 ff.,

as Abelian group of rotations 272 ff.,

in second quantization 250.

Quantum mechanics, general scheme
74 ff., dynamical law 54, 80, 97, 187,

266, composition 91, Heisenberg's
formulation 93, Schrodinger's equa-
tion 54, 101, Dirac's equations 213,
218, Heisenberg-Pauli q. m. of wave
fields 253 ff.

Quantum number, auxiliary (k) 228,
selection rules 233, relation to azi-

muthai and inner q. n. 228, 233 ;

azimuthal q. n. (/, /) 64 ff., 142, 196,
determines orbital moment of mo-
mentum 65, 196, selection rules 84,

201, on composition 194, 207, 373,
relation to auxiliary q.

n. 228, 233 ;

inner q. n. (/,/) 189, 196, deter-

mines total moment of momentum
179, 189, behaviour on composi-
tion 190, 10,4, 206, selection rules

198, relation to auxiliary q. n. 228, 233 ;

magnetic (m) 64, 193, determines

2-component of moment of momentum
65, 180, 189, selection rules 85, 198,
of spin and of orbital moment of

momentum 209, in Dirac's theory

232 ; principal or total (n) in hydro-
gen 69, in hydrogen-like spectra 85,
has no group-theoretic significance

144, true 86, 243, effective 243 ;

radial 64, 144 ; spin (s) 206, re-

lation to valence 369.

Quantum state 43, 56, 80, 188, simple
189.

Quaternion 138, complex 182.

Radial quantum number, see under

Quantum number.

Radiation, from atom 44, 83 ff., 105 ff.,

224, field 102 ff., 215, 256 ff., black

body 41, 104.
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Ray 4, 20, represents state of physical

system 75, r. field 20, rotations of

r. field 273, r. representation 181 ff.

Rayleigh 42.

Real element of algebra 167, gener-

ating unit 295. ,

Realization of group 114, faithful 114,
contracted 118, 119, of algebra 1 66

;

linearr. = representation 120, see

Representation.

Reciprocity theorem, for arbitrary group
338, for permutation group 339.

Reduction of correspondences or re-

presentation 9, 122, uniqueness 136,

156, complete r. 9, 122, 135 (see

Complete reduction), sometimes im-

plies complete r. 18, 123, 136, 292, 301,

306, 308, of regular representation

289 ff., 305 ff., of system space of

equivalent individuals 238 ff., anti-

symmetric r. for electrons 242, 351 ff.,

symmetric r. for photons 248, 351 ff.,

influence on term spectrum 241 , 372 ff.,

general treatment without spin 296 ff.,

with spin 347 ff., for symmetric and

anti-symmetric cases 351 ff

Reflection, signature induced by r. 143,

146, 188.

Regular representation 289, reduction

305 ^
Relativity theory, special 5 1, 98 ff., 146 ff.,

of quantum mechanics 210 ff., of

wave fields 268 ff., r. and spin 204, 217,
222 ff., ; general 219.

Representation, of finite group 120,
of continuous group 160 ff., by ro-

tations of ray space 181, degree or

dimensionality 120, character 150,

complete reduction 122, irreducible

122, uniqueness of reduction 136,

156, criterion for irreducibility 159,
identical 12 1, equivalent 121, unit-

ary 136 ff., any r. equivalent to unitary
r - 1 57 *

formal processes: addition

126, X -multiplication 126, 127, X-
multiplication 127, /"-process 126,
r of sub-group 127 ;

of algebra 166,

304 ff., regular 289 ; general theory :

orthogonality properties 157 ff., 317,
in terms of group algebra 165 ff.,

completeness of system of r. 159, 170,

318, proved by reduction of regular
r. 305 ff. For r. of special groups,
see under qualifying adjective.

Resonance, between states of same energy
87, between equivalent individuals

. 239 ff., 320.

Resonance line 45.

Ritz-Rydberg combination principle 44,
48, 82.

Rontgen 43.

Rotation group, in 2-space and its re-

presentations 140 ff., orthogonality
of characters 162

; in 3-space
and its representations 142 ff., rela-

tion to unitary group in 2-space 144,

augmentation by improper rotations

143, orthogonality of characteristics

163, completeness 143, 163, 180, 184,

389, generated by infinitesimal ele-

ments 175, representation induced in

system space 185, 195,372; m
n -space 184.

Rotation in ray space 21, 181, 273,

representation by r. of ray field 180,

quantum kinematics as Abelian group
of r. 272 ff.

Rupp 50.

Russell-Saunders coupling 206.

Rutherford xiii, 74.

Rydberg number xiii, 45, 69.

c

Scalar product, see Multiplication.

Scalar quantity, commutes with moment
of momentum and signature 188,
selection rules 197.

Schrodinger 48, 50, 56, 102, 187, 216,

220, 258.

Schrodinger's equation 54 ff., relativ-

istic jo I, for system of equivalent
particles 194, as limiting case of

Dirac's 234, derived from com-
mutation rules 277 ff.

Schur, I. 152.

Schwarz' inequality 30, 393.

Second quantization 246, see under

Quantization.

Secular equation 1 1
,
2 1

, 26, in quantum
theory 88, 209, 344.

Selection rules 44, 84, 85, for oscillator

84, for electron without spin 84 ff.,

with spin 232, for scalar quantity 197,
for vector quantity 197, for auxiliary

quantum number 233, azimuthal 84,

201, inner 198, magnetic 85, 198,
for signature 201.

Self-conjugate sub-group 119, maxima
132.

Semi-simple algebra 316.
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Separation of terms by perturbation 87,
]

321, axially symmetric perturbation
193, in normal Zecman effect 101, 193,

198, in anomalous Zeeman effect 204,

208 ff

Series, in hydrogen 45, 69, in alkalies

85, 202.

Series of composition, see Composition
series.

Signature, of representation 143, as

dynamical variable 188, 203, selec-

tion rule 20 1.

Simple algebra 311, 313, group 132,

state 189.

(si) coupling 206.

Smekal-Raman effect 224.

Sommerfeld 193, 236.

Space, affine, linear, vector I ff., linear

sub-s. 2, dual 12, unitary 15 ff.,

Hilbert or function 32, 143, reduction

or deromposition 20, 22, composition
series 122, 135, product 90, tensor

125, 281 ft., group s. 115, 160, re-

presentation 120, 171 ff., algebra as

vector s. 286, 305, system,
see System

space

Space quantization 67, 75, 205.

Span, space spanned by vectors 3, 20.

Spectrum, atomic, line s. reduced to

term s. 44, of hydrogen and I -electron

ions 45, in Schrodinger's theory 69,
in Dirac's theor> 234, of alkalies 85 ff.,

doublets 204, of alkaline earths 207,

246, 3-electron 374, of elements of

periodic table 206 ff., 242 ;

-
general

theory, without spin 194, with spin
206 ff., application of Pauli ex-

clusion principle 242 ff., group-
theoretic classification 369 ff., re-

duction into term classes 283 ff., 320 ff.,

calculation of term values 320 ff.
;

molecular 1.91 ;
of characteristic

numbers 36.

Spherical harmonics 60 ff., 84, as basis

of unitary representation in function

space 142, with spin 230 ff.

Spin, electron 195, 196, 203, as relativ

istic phenomenon 204, 217, 222 ff.,

s. moment of momentum 195, 221,

magnetic effect 204, 224, s. and
valence 369 ff. ; s, perturbation 196,

203, in Dirac's theory 222 ff.
; s.

quantum number, see under Quantum
number.

Stark effect, linear 102.

State of a physical system, represented
by vector or ray in system space 54,

74 ff., pure 75, 78, mixed 79, of

total system under-determined Q2 ;

quantum or stationary 43, 56, 80, 1 88,

simple 189.

Stationary state, see under State.

Statistical aggregate 78, 239, canonical

79-

Statistics, Bose-Einstein 50.

Stern-Gerlach effect 65, 75, 205.

Stieltjes integral 37

Stoner's rule 243.

Sub-algebra, left-invariant 289, (left-

and right-) invariant 167, 311, 314.

Sub-group 116, 334 ff., cyclic 117,
index 118, self-conjugate or invariant

119, maximal invariant 132.

Sub-space 2, 32, invariant, under single
transformation 8, under system of

transformations 122, equivalent or

similar 135, 283, see also Invariant

sub-space.

Substitution in, see Correspondence.

Sum, see Addition
;

s. rule for influence

of magnetic field, 209.

Superposition principle 49.

Symmetric permutation group, see Per-

mutation group, symmetric.

Symmetric transformation in tensor space
282, special 284, Hermitian 283,

unitary 285, enveloping algebra 284,
for arbitrary permutation group 332.

Syrnmetrization 358.

Symmetry class of tensors 287, 296,

primitive 358, of spectral terms 321,

multiplicity 321, 350 ff., 367.

Symmetry operator 286, Young's 359.

Symmetry pattern 358 ff., dual on trans-

posed 361, 308, generated by Young
symmetry operator 359 ff.

System space for translation 54, 74, 195,
for spin 195, total 185, 196, 347 ff.,

for equivalent individuals 1 86, 206 ff.,

347 ;
reduction with respect to

energy 80, moment of momentum
1 88, 206, with regard to symmetric
permutation group 283 ff., 320 ff.,

with regard to Pauli exclusion prin-

ciple 242 ff., 281 ff., 347 ff.
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Tensor 125 ff., 139, 281, symmetry]
class of t. 287, 338, 358, double to

|

347 ;
t. space 125, 281 ft, symmetric

transformation in*t. space 282, in-

variant sub-space 296, reduction 301 ;

energy-momentum t. 218.

Term 44, as energy level or character-

istic number 46, 56, 80, see also under

Spectrum, Separation ;
t. order,

normal 206.

Thomson, G. P. 50.

.Total quantum number, see under

Quantum number.

Trace, of matrix or correspondence 11,

150, of element of algebra 299, 317.

Transformation, linear 4 = Correspond-

ence, linear ; contragredient 12, unit-

ary 16, principal 128, symmetric in

tensor space 282, for arbitrary per-

mutation group 332, special sym-
metric 284, canonical 96, in

quantum mechanics 98 ;
t. to principal

axes 21 ff., 37 ;
t. group 111, for

special groups, see under qualifying

adjective.

Transition probability 83, 89, in radia-

tion field 106 ff.

Translation, left- 116, right- 116.

Translation, electron 195.

True quantum number, see under

Quantum number.

Uhlenbeck 203.

Uncertainty principle 77, derivation

393-

Unimodular linear transformation, group
128.

Unit, element of group 114, of field 302,
of algebra (modulus or principal unit)

304, basal 1 68, 304, idempotent
generating 168, 291, independent
292, primitive 293, real 295 ;

u.

Hermitian form 15.

Unitary correspondence, transformation,
matrix 16 ff., characteristic numbers

26, infinitesimal 28, u. geometry
15 ff., u. t. as canonical t. of quantum
mechanics 98, u. representation of

group 137 ff.

Unitary group, in 2-space 137 ff., its

unitary representations (/ 137, com-
pleteness 137, 163, 389, character-
istics 151, 163, connection with ro-

tation group b3 144, augmented 146 ;

in H-space 139 ff., reduction of (u)/
and algebra of symmetric transforma-
tions 285, characteristics 331, 381,
completeness 381.

Unitary-orthogonal system of vectors
or functions* 19, 33, completeness 33,
on group manifold 158.

Valence 342, 369, v. electron 86, 243

Vector, v. space, v. geometry 1 ff., in

Hilbert space 31 ff., v. field 20, co-

variant and contravariant 13, absolute

magnitude 16, dual 17, scalar pro-
duct 16, unitary-orthogonal v. or

system 16, 19, as element of Abelian

group 1 34 ; 3-v. operator in quantum
mechanics 197, selection and intensity
rules 198 ff., complete system of

orthogonal v. in 3-space 257, v,

potential of electro-magnetic field 98.

Vector model of atom, Hund's 191.

Velocity, phase and group 53.

Volume, measure of, on manifold of

closed continuous group 160, for

unitary group 386, for unitary uni-

modular group 162, 389.

Wave equation, de Brogiie's 53,

Schrodinger's 54 ff., 101, Dirac's 213,

218, 225.

Wave field, Heisenberg-Pauli quantiza-
tion of 253 ff.

Wave length 53.

Wedderburn's theorem 313.

Wentzel 74.

Wien 41.

Wigner 280, 320.

Wintner 39.

Young, A. 358.

Young's symmetry operator 359.

Zeeman effect, normal 85, 101, 193, 198,
anomalous 198, 204, 208, 223, for

doublets 204, for multiplets in gene-
ral 208 ff.
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